disgenet2r代码实操(二):在DisGeNET数据库中探
2023-06-06 本文已影响0人
生信宝库
前言
Immugent在上一期推文:disgenet2r代码实操(一):在DisGeNET数据库中探索基因-疾病的关联中,介绍了如何通过disgenet2r包来分析疾病相关基因的分析流程。在今天的推文中,Immugent将会继续介绍如何通过disgenet2r包来分析疾病相关的突变。
同样,如果想对本篇推文的代码进行复现,需要做一下在另一篇推文:disgenet2r:一个R包解决人类疾病分子功能的全部研究中的准备工作。
废话不多说,下面开始展示~~
代码实操
跟基因不同的是,突变位点可以根据所处基因组位置不同而影响一个或多个基因功能,从而对疾病产生不同程度的影响。
data6 <- variant2disease( variant= "rs121913279",
database = "CURATED")
data6
## Object of class 'DataGeNET.DGN'
## . Search: single
## . Type: variant-disease
## . Database: CURATED
## . Score: 0-1
## . Term: rs121913279
## . Results: 44
plot( data6, class = "Network", prop = 10)
![](https://img.haomeiwen.com/i21134748/0208a349e9974340.png)
plot( data6, class = "DiseaseClass", prop = 3)
![](https://img.haomeiwen.com/i21134748/acbe4902b4ce9895.png)
搜索多个突变位点。。。
data7 <- variant2disease(
variant = c("rs121913013", "rs1060500621",
"rs199472709", "rs72552293",
"rs74315445", "rs199472795"),
database = "ALL")
data7 <- variant2disease(
variant = c("rs121913013", "rs1060500621",
"rs199472709", "rs72552293",
"rs74315445", "rs199472795"),
database = "ALL")
plot( data7,
class = "Network",
prop = 10)
![](https://img.haomeiwen.com/i21134748/d220e65d3775320f.png)
plot( data7, class = "Network", showGenes = T)
![](https://img.haomeiwen.com/i21134748/8dbb8f5d79c479da.png)
plot( data7, class = "Heatmap", prop = 10)
![](https://img.haomeiwen.com/i21134748/31f1407c28891a58.png)
data8 <- disease2variant(disease = c("C0752166"), database = "CLINVAR", score = c(0, 1) )
plot( data8, class = "Network")
![](https://img.haomeiwen.com/i21134748/73e93cdbcfe48bbe.png)
data8 <- disease2variant( disease = c("C3150943", "C1859062", "C2678485", "C4015695"), database = "CURATED", score = c(0.75, 1) )
plot( data8, class = "Network")
![](https://img.haomeiwen.com/i21134748/94c273b40a66cf4b.png)
plot( data8, class = "Network", showGenes = T)
plot( data8, class = "Heatmap", prop = 10)
![](https://img.haomeiwen.com/i21134748/fd1a88520bca8bbd.png)
![](https://img.haomeiwen.com/i21134748/784e66aef513ba50.png)
说在最后
如果说探索基因对疾病影响的软件有很多了,但是目前有关研究突变对疾病产生影响的工具还是很少的,而disgenet2r包在对这种分析上可谓是非常全面的。当然,突变位点最终也均是通过影响后续的基因来产生不同的表型,因此disgenet2r包也对突变影响的功能基因进行预测,从而可以从多组学(基因组+转录组)层面更准确的研究疾病相关的背后生物学机制。
好啦,本期分享到这里就结束了,我们下期再会~~