基于参考基因组的基因组组装和注释
将基因组组装到染色体水平无非就是两种方式:
- 独立组装(de novo);
- 基于参考基因组的组装(reference-guided),即基于近缘或同一物种的基因组染色体同源性进行组装。
独立组装中的contigs或scaffolds一般用遗传图谱、BioNano光学图谱或HiC技术进行染色体水平的挂,现在比较常用是HiC技术。基于参考基因组的组装一般是将contigs或scaffolds与近缘或同一物种的基因组进行比对,从而提升至染色体水平,比较常用的是RagTag工具包,是RaGOO的升级版。有的时候,我们没有相关图谱数据,只能采用此方法将基因组提升至染色体水平。
RagTag可以进行错误组装校正、scaffold组装和修补、scaffold合并等。之后,可以用Liftoff进行基因注释。
RagTag LiftoffRagTag简介
RagTag的流程一共四步:correct,scaffold,patch,merge。
image-20210710151440177软件安装
conda install -c bioconda ragtag
correct
校正是使用参考基因组来鉴定和校正contigs中的组装错误,该步骤不会将序列减少或增加,仅仅是将序列在错误组装的位置进行打断。
用法
usage: ragtag.py correct <reference.fa> <query.fa>
Homology-based assembly correction: Correct sequences in 'query.fa' by comparing them to sequences in 'reference.fa'>
positional arguments:
<reference.fa> reference fasta file (uncompressed or bgzipped)
<query.fa> query fasta file (uncompressed or bgzipped)
optional arguments:
-h, --help show this help message and exit
correction options:
-f INT minimum unique alignment length [1000]
--remove-small remove unique alignments shorter than -f
-q INT minimum mapq (NA for Nucmer alignments) [10]
-d INT maximum alignment merge distance [100000]
-b INT minimum break distance from contig ends [5000]
-e <exclude.txt> list of reference headers to ignore [null]
-j <skip.txt> list of query headers to leave uncorrected [null]
--inter only break misassemblies between reference sequences
--intra only break misassemblies within reference sequences
--gff <features.gff> don't break sequences within gff intervals [null]
input/output options:
-o PATH output directory [./ragtag_output]
-w overwrite intermediate files
-u add suffix to unaltered sequence headers
mapping options:
-t INT number of minimap2/unimap threads [1]
--aligner PATH whole genome aligner executable ('nucmer', 'unimap' or 'minimap2') [minimap2]
--mm2-params STR space delimited minimap2 whole genome alignment parameters ['-x asm5']
--unimap-params STR space delimited unimap parameters ['-x asm5']
--nucmer-params STR space delimted nucmer whole genome alignment parameters ['--maxmatch -l 100 -c 500']
validation options:
--read-aligner PATH read aligner executable (only 'minimap2' is allowed) [minimap2]
-R <reads.fasta> validation reads (uncompressed or gzipped) [null]
-F <reads.fofn> same as '-R', but a list of files [null]
-T STR read type. 'sr', 'ont' and 'corr' accepted for Illumina, nanopore and error corrected long-reads, respectively
[null]
-v INT coverage validation window size [10000]
--max-cov INT break sequences at regions at or above this coverage level [AUTO]
--min-cov INT break sequences at regions at or below this coverage level [AUTO]
scaffold
该步骤是将相邻的contigs序列用100个N连起来,序列的位置和方向需要根据与参考基因组的比对结果确定。
用法
usage: ragtag.py scaffold <reference.fa> <query.fa>
Homology-based assembly scaffolding: Order and orient sequences in 'query.fa' by comparing them to sequences in 'reference.fa'>
positional arguments:
<reference.fa> reference fasta file (uncompressed or bgzipped)
<query.fa> query fasta file (uncompressed or bgzipped)
optional arguments:
-h, --help show this help message and exit
scaffolding options:
-e <exclude.txt> list of reference sequences to ignore [null]
-j <skip.txt> list of query sequences to leave unplaced [null]
-J <hard-skip.txt> list of query headers to leave unplaced and exclude from 'chr0' ('-C') [null]
-f INT minimum unique alignment length [1000]
--remove-small remove unique alignments shorter than '-f'
-q INT minimum mapq (NA for Nucmer alignments) [10]
-d INT maximum alignment merge distance [100000]
-i FLOAT minimum grouping confidence score [0.2]
-a FLOAT minimum location confidence score [0.0]
-s FLOAT minimum orientation confidence score [0.0]
-C concatenate unplaced contigs and make 'chr0'
-r infer gap sizes. if not, all gaps are 100 bp
-g INT minimum inferred gap size [100]
-m INT maximum inferred gap size [100000]
input/output options:
-o PATH output directory [./ragtag_output]
-w overwrite intermediate files
-u add suffix to unplaced sequence headers
mapping options:
-t INT number of minimap2/unimap threads [1]
--aligner PATH aligner executable ('nucmer', 'unimap' or 'minimap2') [minimap2]
--mm2-params STR space delimited minimap2 parameters ['-x asm5']
--unimap-params STR space delimited unimap parameters ['-x asm5']
--nucmer-params STR space delimted nucmer parameters ['--maxmatch -l 100 -c 500']
patch
该步骤是用contigs序列对上一步得到的scaffold序列进行gap填补。该步骤比较耗时,如果急需使用基因组进行后续分析,可以省略该步骤。
用法
usage: ragtag.py patch <target.fa> <query.fa>
Homology-based continuous assembly scaffolding and gap-filling: Make continuous joins and fill gaps in 'target.fa' using sequences from 'query.fa'
positional arguments:
<target.fa> target fasta file (uncompressed or bgzipped)
<query.fa> query fasta file (uncompressed or bgzipped)
optional arguments:
-h, --help show this help message and exit
patching:
-e <exclude.txt> list of target sequences to ignore [null]
-j <skip.txt> list of query sequences to ignore [null]
-f INT minimum unique alignment length [1000]
--remove-small remove unique alignments shorter than '-f'
-q INT minimum mapq (NA for Nucmer alignments) [10]
-d INT maximum alignment merge distance [100000]
-s INT minimum merged alignment length [50000]
-i FLOAT maximum merged alignment distance from sequence terminus. fraction of the sequence length if < 1 [0.05]
--fill-only only fill existing target gaps. do not join target sequences
--join-only only join and patch target sequences. do not fill existing gaps
input/output options:
-o PATH output directory [./ragtag_output]
-w overwrite intermediate files
-u add suffix to unplaced sequence headers
mapping options:
-t INT number of minimap2/unimap threads [1]
--aligner PATH aligner executable ('nucmer' (recommended), 'unimap' or 'minimap2') [nucmer]
--mm2-params STR space delimited minimap2 parameters ['-x asm5']
--unimap-params STR space delimited unimap parameters ['-x asm5']
--nucmer-params STR space delimted nucmer parameters ['--maxmatch -l 100 -c 500']
merge
在scaffolding过程中,可能会根据不同参数或图谱数据产生多个版本的基因组组装结果,该步骤可以将多个结果根据权重进行最终组装结果的生成。
如果有HiC数据,还可以加入HiC数据生成比较好的组装结果。
用法
usage: ragtag.py merge <asm.fa> <scf1.agp> <scf2.agp> [...]
Scaffold merging: derive a consensus scaffolding solution by reconciling distinct scaffoldings of 'asm.fa'
positional arguments:
<asm.fasta> assembly fasta file (uncompressed or bgzipped)
<scf1.agp> <scf2.agp> [...]
scaffolding AGP files
optional arguments:
-h, --help show this help message and exit
merging options:
-f FILE CSV list of (AGP file,weight) [null]
-j <skip.txt> list of query headers to leave unplaced [null]
-l INT minimum assembly sequence length [100000]
-e FLOAT minimum edge weight. NA if using Hi-C [0.0]
--gap-func STR function for merging gap lengths {'min', 'max', or 'mean'} [min]
input/output options:
-o PATH output directory [./ragtag_output]
-w overwrite intermediate files
-u add suffix to unplaced sequence headers
Hi-C options:
-b FILE Hi-C alignments in BAM format, sorted by read name [null]
-r STR CSV list of restriction enzymes/sites or 'DNase' [GATC]
-p FLOAT portion of the sequence termini to consider for links [1.0]
--list-enzymes list all available restriction enzymes/sites
Liftoff简介
Liftoff 是一个可以准确根据同一物种或近缘物种基因组进行基因注释映射的工具。该工具仅需两个基因组序列和参考基因组的基因注释文件即可进行基因注释。Liftoff使用minimap2将参考基因组的基因序列与目标基因组比对,这样的好处是,即使两个基因组间存在许多结构上的差异,也可将基因结构鉴定出来。对于每一个鉴定的基因,Liftoff找到外显子区的比对,并使序列的一致性最大,同时保留转录本和基因结构。如果两个基因错误地比对到同一个位点,Liftoff会确定最好基因结构。此外,Liftoff还可以找到在目标基因组中存在而在参考基因组中不存在的基因拷贝。
安装
conda install -c bioconda liftoff
用法
usage: liftoff [-h] (-g GFF | -db DB) [-o FILE] [-u FILE] [-exclude_partial]
[-dir DIR] [-mm2_options =STR] [-a A] [-s S] [-d D] [-flank F]
[-V] [-p P] [-m PATH] [-f TYPES] [-infer_genes]
[-infer_transcripts] [-chroms TXT] [-unplaced TXT] [-copies]
[-sc SC] [-overlap O] [-mismatch M] [-gap_open GO]
[-gap_extend GE]
target reference
Lift features from one genome assembly to another
Required input (sequences):
target target fasta genome to lift genes to
reference reference fasta genome to lift genes from
Required input (annotation):
-g GFF annotation file to lift over in GFF or GTF format
-db DB name of feature database; if not specified, the -g
argument must be provided and a database will be built
automatically
Output:
-o FILE write output to FILE in GFF3 format; by default, output
is written to terminal (stdout)
-u FILE write unmapped features to FILE; default is
"unmapped_features.txt"
-exclude_partial write partial mappings below -s and -a threshold to
unmapped_features.txt; if true partial/low sequence
identity mappings will be included in the gff file with
partial_mapping=True, low_identity=True in comments
-dir DIR name of directory to save intermediate fasta and SAM
files; default is "intermediate_files"
Alignments:
-mm2_options =STR space delimited minimap2 parameters. By default ="-a
--end-bonus 5 --eqx -N 50 -p 0.5"
-a A designate a feature mapped only if it aligns with
coverage ≥A; by default A=0.5
-s S designate a feature mapped only if its child features
(usually exons/CDS) align with sequence identity ≥S; by
default S=0.5
-d D distance scaling factor; alignment nodes separated by
more than a factor of D in the target genome will not be
connected in the graph; by default D=2.0
-flank F amount of flanking sequence to align as a fraction
[0.0-1.0] of gene length. This can improve gene
alignment where gene structure differs between target
and reference; by default F=0.0
Miscellaneous settings:
-h, --help show this help message and exit
-V, --version show program version
-p P use p parallel processes to accelerate alignment; by
default p=1
-m PATH Minimap2 path
-f TYPES list of feature types to lift over
-infer_genes use if annotation file only includes transcripts,
exon/CDS features
-infer_transcripts use if annotation file only includes exon/CDS features
and does not include transcripts/mRNA
-chroms TXT comma seperated file with corresponding chromosomes in
the reference,target sequences
-unplaced TXT text file with name(s) of unplaced sequences to map
genes from after genes from chromosomes in chroms.txt
are mapped; default is "unplaced_seq_names.txt"
-copies look for extra gene copies in the target genome
-sc SC with -copies, minimum sequence identity in exons/CDS for
which a gene is considered a copy; must be greater than
-s; default is 1.0
-overlap O maximum fraction [0.0-1.0] of overlap allowed by 2
features; by default O=0.1
-mismatch M mismatch penalty in exons when finding best mapping; by
default M=2
-gap_open GO gap open penalty in exons when finding best mapping; by
default GO=2
-gap_extend GE gap extend penalty in exons when finding best mapping;
by default GE=1
参数的详细说明可以参考这里。
下面是我最近用此方法组装一个基因组并进行注释的流程。
基因组组装与注释分析实战
contigs校正
ragtag.py correct westar.fasta ZYCR1-genome.clean.fa -t 30 -u
输出文件:
- ragtag.correct.fasta: 校正的contigs序列;
- ragtag.correct.agp:包含contigs序列的断点坐标的文件。
生成scaffold
ragtag.py scaffold westar.fasta ragtag_output/ragtag.correct.fasta -t 30 -u -C
输出文件:
- ragtag.scaffold.agp:contigs序列的方向和顺序(AGP格式);
- ragtag.scaffold.fasta:scaffold序列;
- ragtag.scaffold.stats:scaffolding过程中的一些统计信息。
基因注释
liftoff -g westar.gff3 -o ZYCR1.gene.gff3 -p 28 -chroms chr_pairs.txt ZYCR1.genome.asm.final.fasta westar.fa
为了提高基因映射的准确性,这里仅允许相同染色体间的基因进行映射,因此需要指定两个基因组间的染色体对应关系,即-chroms
参数,其格式如下:
chrA01,chrA01
chrA02,chrA02
chrA03,chrA03
chrA04,chrA04
chrA05,chrA05
chrA06,chrA06
chrA07,chrA07
chrA08,chrA08
chrA09,chrA09
chrA10,chrA10
chrC01,chrC01
chrC02,chrC02
chrC03,chrC03
chrC04,chrC04
chrC05,chrC05
chrC06,chrC06
chrC07,chrC07
chrC08,chrC08
chrC09,chrC09
Uncluster,Uncluster
基因重命名
这里可以使用一个脚本GeneIDRename进行:
perl GeneIDRename -g ZYCR1.gene.gff3 -o ZYCR1.gene.rename.gff3 -c 6
提取mRNA和protein序列
gffread ZYCR1.gene.rename.gff3 -g ZYCR1.genome.asm.final.fasta -x ZYCR1.cds.fa -y ZYCR1.pep.fa
参考资料
-
Alonge, M., Soyk, S., Ramakrishnan, S. et al. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol 20, 224 (2019). https://doi.org/10.1186/s13059-019-1829-6
-
Alaina Shumate, Steven L Salzberg, Liftoff: accurate mapping of gene annotations, Bioinformatics, 2021;, btaa1016, https://doi.org/10.1093/bioinformatics/btaa1016