呆鸟的Python数据分析

利用Python进行数据分析第二版复现(九)

2020-02-04  本文已影响0人  一行白鹭上青天

第10章 数据聚合与分组运算

分组统计数据,并对各组进行数据处理分析,是数据分析中的重要环节之一。pandas提供了一个groupby功能。

10.1 GroupBy机制

“split-apply-combine”(拆分-应用-合并),先把数据按着自己的需求或者算法要求的形式进行分组,然后应用相关的数据分析方法,最后合并处理结果。

import numpy as np
import pandas as pd
df = pd.DataFrame({'key1' : ['a', 'a', 'b', 'b', 'a'],
                   'key2' : ['one', 'two', 'one', 'two', 'one'],
                   'data1' : np.random.randn(5),
                   'data2' : np.random.randn(5)})
print(df)
  key1 key2     data1     data2
0    a  one -1.287078  0.667990
1    a  two  0.073181 -0.501827
2    b  one -0.354324  1.296282
3    b  two  0.980430  0.907485
4    a  one  1.610517 -0.461716
#对df按照key2进行分组,根据分组计算data2的平均值
#在pandas中可以访问data2,根据key2进行调用groupby函数:
grouped=df['data2'].groupby(df['key2'])
grouped.mean()
key2
one    0.500852
two    0.202829
Name: data2, dtype: float64

如果传入多个分组对象,也会根据分组的不同,进行相关的数据运算。

means = df['data1'].groupby([df['key1'], df['key2']]).mean()
print(means)
print('\n')
print(means.unstack())
key1  key2
a     one     0.161719
      two     0.073181
b     one    -0.354324
      two     0.980430
Name: data1, dtype: float64


key2       one       two
key1                    
a     0.161719  0.073181
b    -0.354324  0.980430
#分组列名可以不是数组中的的情况下,也可以传入新的数组。
states = np.array(['Ohio', 'California', 'California', 'Ohio', 'Ohio'])
years = np.array([2005, i2005, 2006, 2005, 2006])
print(df['data1'].groupby([states, years]).mean())
California  2005    0.073181
            2006   -0.354324
Ohio        2005   -0.153324
            2006    1.610517
Name: data1, dtype: float64

使用groupby的size方法,会返回一个含有分组大小的series

print( df.groupby(['key1', 'key2']).size())
key1  key2
a     one     2
      two     1
b     one     1
      two     1
dtype: int64

对分组进行迭代

for name, group in df.groupby('key1'):
    print(name)
    print(group)
a
  key1 key2     data1     data2
0    a  one -1.287078  0.667990
1    a  two  0.073181 -0.501827
4    a  one  1.610517 -0.461716
b
  key1 key2     data1     data2
2    b  one -0.354324  1.296282
3    b  two  0.980430  0.907485
for (k1, k2), group in df.groupby(['key1', 'key2']):
    print((k1,k2))
    print(group)
('a', 'one')
  key1 key2     data1     data2
0    a  one -1.287078  0.667990
4    a  one  1.610517 -0.461716
('a', 'two')
  key1 key2     data1     data2
1    a  two  0.073181 -0.501827
('b', 'one')
  key1 key2     data1     data2
2    b  one -0.354324  1.296282
('b', 'two')
  key1 key2    data1     data2
3    b  two  0.98043  0.907485

选取一列或列的子集

对于其中部分数据的选择可以按着以下的方法。

s_grouped = df.groupby(['key1', 'key2'])['data2']
print(s_grouped.mean())
key1  key2
a     one     0.103137
      two    -0.501827
b     one     1.296282
      two     0.907485
Name: data2, dtype: float64

通过字典或Series进行分组

people = pd.DataFrame(np.random.randn(5, 5),
                      columns=['a', 'b', 'c', 'd', 'e'],
                      index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis'])
people.iloc[2:3, [1, 2]] = np.nan
print(people)
               a         b         c         d         e
Joe    -0.582748 -0.005825 -0.957329 -0.840149 -0.325898
Steve   1.112183  0.624433  2.891562 -0.420787  0.539915
Wes     0.445727       NaN       NaN -0.295581 -1.019202
Jim    -1.778101  0.924397  0.772355  0.920256 -0.049690
Travis  0.079208  0.737500 -0.065959  0.679241 -0.262730
mapping = {'a': 'red', 'b': 'red', 'c': 'blue',
           'd': 'blue', 'e': 'red', 'f' : 'orange'}
by_column = people.groupby(mapping, axis=1)
print(by_column.sum())
            blue       red
Joe    -1.797478 -0.914472
Steve   2.470775  2.276531
Wes    -0.295581 -0.573475
Jim     1.692611 -0.903393
Travis  0.613282  0.553978

通过函数进行分组

以计算1个字符串长度的数组,更简单的方法是传入len函数

print(people.groupby(len).sum())
          a         b         c         d         e
3 -1.915123  0.918572 -0.184974 -0.215474 -1.394790
5  1.112183  0.624433  2.891562 -0.420787  0.539915
6  0.079208  0.737500 -0.065959  0.679241 -0.262730
#同时也可以根据其他级别进行分组计算.
key_list = ['one', 'one', 'one', 'two', 'two']
print( people.groupby([len, key_list]).min())
              a         b         c         d         e
3 one -0.582748 -0.005825 -0.957329 -0.840149 -1.019202
  two -1.778101  0.924397  0.772355  0.920256 -0.049690
5 one  1.112183  0.624433  2.891562 -0.420787  0.539915
6 two  0.079208  0.737500 -0.065959  0.679241 -0.262730

根据索引级别分组

columns = pd.MultiIndex.from_arrays([['US', 'US', 'US', 'JP', 'JP'],
                                     [1, 3, 5, 1, 3]],
                                    names=['cty', 'tenor'])
hier_df = pd.DataFrame(np.random.randn(4, 5), columns=columns)
print(hier_df)
cty          US                            JP          
tenor         1         3         5         1         3
0     -0.474091 -1.441095 -0.027898  0.411016  0.830097
1     -0.173916 -0.729263 -0.885296 -0.574423 -1.892896
2     -1.158821 -0.939684 -1.185016 -0.915995 -0.892493
3     -1.066578  1.639527  0.651484 -0.054653  0.572186

10.2 数据聚合

这个是指一些常用的数据统计过程。

在这里插入图片描述
grouped = df.groupby('key1')
grouped['data1'].quantile(0.9)
key1
a    1.303050
b    0.846955
Name: data1, dtype: float64
print( grouped.describe())
     data1                                                              \
     count      mean       std       min       25%       50%       75%   
key1                                                                     
a      3.0  0.132207  1.449699 -1.287078 -0.606948  0.073181  0.841849   
b      2.0  0.313053  0.943814 -0.354324 -0.020636  0.313053  0.646742   

               data2                                                    \
           max count      mean       std       min       25%       50%   
key1                                                                     
a     1.610517   3.0 -0.098518  0.664118 -0.501827 -0.481771 -0.461716   
b     0.980430   2.0  1.101883  0.274921  0.907485  1.004684  1.101883   

                          
           75%       max  
key1                      
a     0.103137  0.667990  
b     1.199083  1.296282  

面向列的多函数应用

tips = pd.read_csv('examples/tips.csv')
tips['tip_pct'] = tips['tip'] / tips['total_bill']
print(tips[:6])
   total_bill   tip smoker  day    time  size   tip_pct
0       16.99  1.01     No  Sun  Dinner     2  0.059447
1       10.34  1.66     No  Sun  Dinner     3  0.160542
2       21.01  3.50     No  Sun  Dinner     3  0.166587
3       23.68  3.31     No  Sun  Dinner     2  0.139780
4       24.59  3.61     No  Sun  Dinner     4  0.146808
5       25.29  4.71     No  Sun  Dinner     4  0.186240
#通过天数和smoker对数组进行分组。
grouped = tips.groupby(['day', 'smoker'])

grouped_pct = grouped['tip_pct']
print(grouped_pct.agg('mean'))
day   smoker
Fri   No        0.151650
      Yes       0.174783
Sat   No        0.158048
      Yes       0.147906
Sun   No        0.160113
      Yes       0.187250
Thur  No        0.160298
      Yes       0.163863
Name: tip_pct, dtype: float64
#如果传入一组函数或函数名,得到的DataFrame的列就会以相应的函数命名:
print(grouped_pct.agg(['mean', 'std']))#我在传入peak_to_peak时失败了。
                 mean       std
day  smoker                    
Fri  No      0.151650  0.028123
     Yes     0.174783  0.051293
Sat  No      0.158048  0.039767
     Yes     0.147906  0.061375
Sun  No      0.160113  0.042347
     Yes     0.187250  0.154134
Thur No      0.160298  0.038774
     Yes     0.163863  0.039389

如果传入的是1个由(name,function)元组组成的列表,
则各元组的第1个元素就会被yong作DataFrame的列名。

print(grouped_pct.agg([('foo', 'mean'), ('bar', np.std)]))
                  foo       bar
day  smoker                    
Fri  No      0.151650  0.028123
     Yes     0.174783  0.051293
Sat  No      0.158048  0.039767
     Yes     0.147906  0.061375
Sun  No      0.160113  0.042347
     Yes     0.187250  0.154134
Thur No      0.160298  0.038774
     Yes     0.163863  0.039389
#如果想要对两列数据统计三个统计信息.
functions = ['count', 'mean', 'max']
result = grouped['tip_pct', 'total_bill'].agg(functions)
print(result)
            tip_pct                     total_bill                  
              count      mean       max      count       mean    max
day  smoker                                                         
Fri  No           4  0.151650  0.187735          4  18.420000  22.75
     Yes         15  0.174783  0.263480         15  16.813333  40.17
Sat  No          45  0.158048  0.291990         45  19.661778  48.33
     Yes         42  0.147906  0.325733         42  21.276667  50.81
Sun  No          57  0.160113  0.252672         57  20.506667  48.17
     Yes         19  0.187250  0.710345         19  24.120000  45.35
Thur No          45  0.160298  0.266312         45  17.113111  41.19
     Yes         17  0.163863  0.241255         17  19.190588  43.11

以“没有行索引”的形式返回聚合数据

这个可以按着序号进行数据表示

print(tips.groupby(['day', 'smoker'], as_index=False).mean())
    day smoker  total_bill       tip      size   tip_pct
0   Fri     No   18.420000  2.812500  2.250000  0.151650
1   Fri    Yes   16.813333  2.714000  2.066667  0.174783
2   Sat     No   19.661778  3.102889  2.555556  0.158048
3   Sat    Yes   21.276667  2.875476  2.476190  0.147906
4   Sun     No   20.506667  3.167895  2.929825  0.160113
5   Sun    Yes   24.120000  3.516842  2.578947  0.187250
6  Thur     No   17.113111  2.673778  2.488889  0.160298
7  Thur    Yes   19.190588  3.030000  2.352941  0.163863

10.3 apply:一般性的“拆分-应用-合并”

#选取指定列具有最大值的行的函数
def top(df, n=5, column='tip_pct'):
    return df.sort_values(by=column)[-n:]
print(top(tips, n=6))
     total_bill   tip smoker  day    time  size   tip_pct
109       14.31  4.00    Yes  Sat  Dinner     2  0.279525
183       23.17  6.50    Yes  Sun  Dinner     4  0.280535
232       11.61  3.39     No  Sat  Dinner     2  0.291990
67         3.07  1.00    Yes  Sat  Dinner     1  0.325733
178        9.60  4.00    Yes  Sun  Dinner     2  0.416667
172        7.25  5.15    Yes  Sun  Dinner     2  0.710345
#对smoker分组丙用该函数调用apply。
print( tips.groupby('smoker').apply(top))
#top函数在DataFrame的各个片段上调用,然后结果由pandas.concat组装到一起
            total_bill   tip smoker   day    time  size   tip_pct
smoker                                                           
No     88        24.71  5.85     No  Thur   Lunch     2  0.236746
       185       20.69  5.00     No   Sun  Dinner     5  0.241663
       51        10.29  2.60     No   Sun  Dinner     2  0.252672
       149        7.51  2.00     No  Thur   Lunch     2  0.266312
       232       11.61  3.39     No   Sat  Dinner     2  0.291990
Yes    109       14.31  4.00    Yes   Sat  Dinner     2  0.279525
       183       23.17  6.50    Yes   Sun  Dinner     4  0.280535
       67         3.07  1.00    Yes   Sat  Dinner     1  0.325733
       178        9.60  4.00    Yes   Sun  Dinner     2  0.416667
       172        7.25  5.15    Yes   Sun  Dinner     2  0.710345

禁止分组键

主要是可以得到在一个表里无差别显示。

print( tips.groupby('smoker', group_keys=False).apply(top))
     total_bill   tip smoker   day    time  size   tip_pct
88        24.71  5.85     No  Thur   Lunch     2  0.236746
185       20.69  5.00     No   Sun  Dinner     5  0.241663
51        10.29  2.60     No   Sun  Dinner     2  0.252672
149        7.51  2.00     No  Thur   Lunch     2  0.266312
232       11.61  3.39     No   Sat  Dinner     2  0.291990
109       14.31  4.00    Yes   Sat  Dinner     2  0.279525
183       23.17  6.50    Yes   Sun  Dinner     4  0.280535
67         3.07  1.00    Yes   Sat  Dinner     1  0.325733
178        9.60  4.00    Yes   Sun  Dinner     2  0.416667
172        7.25  5.15    Yes   Sun  Dinner     2  0.710345

分位数和桶分析

书中通过一个例子说明了把数据按着一定的分组,进行分组,最后通过得到的分组进行相关的统计。

frame = pd.DataFrame({'data1': np.random.randn(1000),
                      'data2': np.random.randn(1000)})
quartiles = pd.cut(frame.data1, 4)
print( quartiles[:10])
0     (-0.392, 1.249]
1    (-2.034, -0.392]
2    (-2.034, -0.392]
3     (-0.392, 1.249]
4     (-0.392, 1.249]
5       (1.249, 2.89]
6    (-2.034, -0.392]
7    (-2.034, -0.392]
8     (-0.392, 1.249]
9     (-0.392, 1.249]
Name: data1, dtype: category
Categories (4, interval[float64]): [(-3.681, -2.034] < (-2.034, -0.392] < (-0.392, 1.249] < (1.249, 2.89]]
def get_stats(group):
    return {'min': group.min(), 'max': group.max(),
            'count': group.count(), 'mean': group.mean()}
grouped = frame.data2.groupby(quartiles)
print( grouped.apply(get_stats).unstack())
                       min       max  count      mean
data1                                                
(-3.681, -2.034] -2.434236  0.861348   19.0 -0.192120
(-2.034, -0.392] -2.856124  3.208903  313.0  0.036098
(-0.392, 1.249]  -2.630524  2.791874  557.0  0.061876
(1.249, 2.89]    -2.068452  2.237532  111.0 -0.009870
#要根据样本分位数得到大小相等的桶,使用qcut即可。传入labels=False即可
#只获取分位数的编号
grouping = pd.qcut(frame.data1, 10, labels=False)
grouped = frame.data2.groupby(grouping)
print( grouped.apply(get_stats).unstack())
            min       max  count      mean
data1                                     
0     -2.434236  2.511737  100.0 -0.079724
1     -2.709602  2.556729  100.0 -0.019378
2     -2.632848  3.208903  100.0  0.130136
3     -2.856124  2.791874  100.0  0.024044
4     -1.812431  2.503049  100.0  0.142189
5     -2.304221  2.321085  100.0 -0.054853
6     -1.763090  2.657159  100.0  0.163413
7     -1.816266  2.559731  100.0  0.162461
8     -2.630524  2.039064  100.0 -0.101672
9     -2.068452  2.237532  100.0  0.043562

用特定于分组的值填充缺失值

有时则可能会希望用1个固定值或由数据集本身所衍生出来的值去填充NA值。这时就得使用fillna这个工具了。利用用平均值填充去掉NA值。

s = pd.Series(np.random.randn(6))
s[::2] = np.nan
print(s)
print('\n')
print( s.fillna(s.mean()))
0         NaN
1   -1.017690
2         NaN
3   -0.324837
4         NaN
5   -0.441826
dtype: float64


0   -0.594784
1   -1.017690
2   -0.594784
3   -0.324837
4   -0.594784
5   -0.441826
dtype: float64

随机采样和排列

“抽取”的方式有很多,使用的方法是对Series使用sample方法

suits = ['H', 'S', 'C', 'D']
card_val = (list(range(1, 11)) + [10] * 3) * 4
base_names = ['A'] + list(range(2, 11)) + ['J', 'K', 'Q']
cards = []
for suit in ['H', 'S', 'C', 'D']:
    cards.extend(str(num) + suit for num in base_names)
deck = pd.Series(card_val, index=cards)
print(deck[:13])
AH      1
2H      2
3H      3
4H      4
5H      5
6H      6
7H      7
8H      8
9H      9
10H    10
JH     10
KH     10
QH     10
dtype: int64
def draw(deck, n=5):
    return deck.sample(n)
draw(deck)
KC    10
QC    10
JD    10
8D     8
QS    10
dtype: int64

分组加权平均数和相关系数

df = pd.DataFrame({'category': ['a', 'a', 'a', 'a',
                                'b', 'b', 'b', 'b'],
                   'data': np.random.randn(8),
                   'weights': np.random.rand(8)})
print(df)
  category      data   weights
0        a  1.154081  0.056365
1        a  0.689828  0.459289
2        a  1.556843  0.570800
3        a -0.133847  0.449101
4        b -0.925937  0.381151
5        b -1.068985  0.839105
6        b -0.261693  0.932000
7        b -1.052958  0.847123
#利用category计算分组加权平均数
grouped = df.groupby('category')
get_wavg = lambda g: np.average(g['data'], weights=g['weights'])
print( grouped.apply(get_wavg))
category
a    0.788259
b   -0.795430
dtype: float64
 close_px = pd.read_csv('examples/stock_px_2.csv', parse_dates=True,
                        index_col=0)
print(close_px[-4:])
              AAPL   MSFT    XOM      SPX
2011-10-11  400.29  27.00  76.27  1195.54
2011-10-12  402.19  26.96  77.16  1207.25
2011-10-13  408.43  27.18  76.37  1203.66
2011-10-14  422.00  27.27  78.11  1224.58
spx_corr = lambda x: x.corrwith(x['SPX'])#计算每列和spx列的成对相关系数
rets = close_px.pct_change().dropna()#使用pct_change计算close_px的百分比变化
get_year = lambda x: x.year
by_year = rets.groupby(get_year)
print(by_year.apply(spx_corr))
          AAPL      MSFT       XOM  SPX
2003  0.541124  0.745174  0.661265  1.0
2004  0.374283  0.588531  0.557742  1.0
2005  0.467540  0.562374  0.631010  1.0
2006  0.428267  0.406126  0.518514  1.0
2007  0.508118  0.658770  0.786264  1.0
2008  0.681434  0.804626  0.828303  1.0
2009  0.707103  0.654902  0.797921  1.0
2010  0.710105  0.730118  0.839057  1.0
2011  0.691931  0.800996  0.859975  1.0
print(by_year.apply(lambda g: g['AAPL'].corr(g['MSFT'])))
2003    0.480868
2004    0.259024
2005    0.300093
2006    0.161735
2007    0.417738
2008    0.611901
2009    0.432738
2010    0.571946
2011    0.581987
dtype: float64

组级别的线性回归

import statsmodels.api as sm
#regress函数对个数据块执行普通最小二乘法回归。
def regress(data, yvar, xvars):
    Y = data[yvar]
    X = data[xvars]
    X['intercept'] = 1.
    result = sm.OLS(Y, X).fit()
    return result.params
print(by_year.apply(regress, 'AAPL', ['SPX']))
           SPX  intercept
2003  1.195406   0.000710
2004  1.363463   0.004201
2005  1.766415   0.003246
2006  1.645496   0.000080
2007  1.198761   0.003438
2008  0.968016  -0.001110
2009  0.879103   0.002954
2010  1.052608   0.001261
2011  0.806605   0.001514

10.4 透视表和交叉表

print(tips.pivot_table(index=['day', 'smoker']))
                 size       tip   tip_pct  total_bill
day  smoker                                          
Fri  No      2.250000  2.812500  0.151650   18.420000
     Yes     2.066667  2.714000  0.174783   16.813333
Sat  No      2.555556  3.102889  0.158048   19.661778
     Yes     2.476190  2.875476  0.147906   21.276667
Sun  No      2.929825  3.167895  0.160113   20.506667
     Yes     2.578947  3.516842  0.187250   24.120000
Thur No      2.488889  2.673778  0.160298   17.113111
     Yes     2.352941  3.030000  0.163863   19.190588
#聚合tip_pct和size,而且想根据time进行分组
print(tips.pivot_table(['tip_pct', 'size'], index=['time', 'day'],columns='smoker'))
                 size             tip_pct          
smoker             No       Yes        No       Yes
time   day                                         
Dinner Fri   2.000000  2.222222  0.139622  0.165347
       Sat   2.555556  2.476190  0.158048  0.147906
       Sun   2.929825  2.578947  0.160113  0.187250
       Thur  2.000000       NaN  0.159744       NaN
Lunch  Fri   3.000000  1.833333  0.187735  0.188937
       Thur  2.500000  2.352941  0.160311  0.163863
在这里插入图片描述

交叉表:crosstab

data=pd.DataFrame({'q':np.random.randn(6),
                  'p':np.random.randn(6),
                  'mm':['a','b','a','b','a','a'],
                   'nn':['bob','h','g','h','h','bob']})
print(data)
          q         p mm   nn
0  1.178628  0.373467  a  bob
1  0.344182 -0.030927  b    h
2 -1.837187  0.209537  a    g
3  1.131483  0.848201  b    h
4  0.386403 -0.199555  a    h
5 -0.989318 -0.038694  a  bob
print(pd.crosstab(data.mm, data.nn, margins=True))
nn   bob  g  h  All
mm                 
a      2  1  1    4
b      0  0  2    2
All    2  1  3    6

上一篇下一篇

猜你喜欢

热点阅读