android整理之HashMap

2018-05-01  本文已影响0人  源来是你啊

HashMap简介

HashMap基于哈希表的 Map 接口的实现,继承自AbstractMap。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。但是它不是线程安全的集合,只能在单线程内操作数据(ConcurrentHashMap是线程安全的)。

HashMap数据结构

HashMap是基于数组和链表实现的:HashMap首先创建了一个数组,然后这个数组的每个元素都是一个链表的头结点。当HashMap存储一个元素时,首先获取key.hashCode()来计算此元素的hash值,然后通过indexFor函数计算它应该存储在哈希数组的哪个下标链表里面。通过这样的方式避免了哈希散列冲突,也增加了查询速度。


hashmap数据结构

解释一下:图中,0~15部分即代表哈希表,也称为哈希数组,数组的每个元素都是一个单链表的头节点,链表是用来解决冲突的,如果不同的key映射到了数组的同一位置处,就将其放入单链表中。

当然解决hashmap散列冲突的方法:开放定址法和拉链法,这里我们介绍一下拉链法:

从上图我们可以发现哈希表是由数组+链表组成的,一个长度为16的数组中,每个元素存储的是一个链表的头结点Bucket桶。一般情况是通过hash(key)%len获得,也就是元素的key的哈希值对数组长度取模得到。比如上述哈希表中,12%16=12,28%16=12,108%16=12,140%16=12。所以12、28、108以及140都存储在数组下标为12的位置。

源码分析

首先看一下hashmap的关键属性变量:

/**
     * The table, resized as necessary. Length MUST Always be a power of two.
     *这就是存储链表的哈希数组
     */
    transient Entry[] table;

    /**
     * The number of key-value mappings contained in this map.
     * 元素的个数  
     */
    transient int size;

    /**
     * The next size value at which to resize (capacity * load factor).
     *  临界值
     */
    int threshold;

    /**
     * The load factor for the hash table.
     *
     * 加载因子
     */
    final float loadFactor;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     * 被修改的次数
     */
    transient volatile int modCount;

①loadFactor:加载因子 表示这个哈希表被填满的程度,若加载因子越大,则表明表中元素越多,空间利用率越高,但散列冲突会增加,查询速度会降低;

②所以如果对内存足够需要查询速度,就可以把叫矮子啊因子设置小一点;以空间换时间;

接下来看一下HashMap的构造方法:

public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);

        // Find a power of 2 >= initialCapacity
        int capacity = 1;
        //capacity 表容量 initialCapacity初始化容量
        //算数左移 每次乘2 所以capacity是2的n次幂
        while (capacity < initialCapacity)
            capacity <<= 1;

        this.loadFactor = loadFactor;
        //临界值为容量乘以加载因子
        threshold = (int)(capacity * loadFactor);
        table = new Entry[capacity];
        init();
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and the default load factor (0.75).
     *
     * @param  initialCapacity the initial capacity.
     * @throws IllegalArgumentException if the initial capacity is negative.
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the default initial capacity
     * (16) and the default load factor (0.75).
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
        table = new Entry[DEFAULT_INITIAL_CAPACITY];
        init();
    }

在此之前先介绍一下哈希数组的实体类Entry:

static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;//元素键
        V value;//元素值
        Entry<K,V> next;//下一个元素
        final int hash;//哈希值

        /**
         * Creates new entry.
         */
        Entry(int h, K k, V v, Entry<K,V> n) {
            value = v;
            next = n;
            key = k;
            hash = h;
        }

        public final K getKey() {
            return key;
        }

        public final V getValue() {
            return value;
        }

        public final V setValue(V newValue) {
        V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry)o;
            Object k1 = getKey();
            Object k2 = e.getKey();
            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
                Object v1 = getValue();
                Object v2 = e.getValue();
                if (v1 == v2 || (v1 != null && v1.equals(v2)))
                    return true;
            }
            return false;
        }

        public final int hashCode() {
            return (key==null   ? 0 : key.hashCode()) ^
                   (value==null ? 0 : value.hashCode());
        }

        public final String toString() {
            return getKey() + "=" + getValue();
        }

        /**
         * This method is invoked whenever the value in an entry is
         * overwritten by an invocation of put(k,v) for a key k that's already
         * in the HashMap.
         */
        void recordAccess(HashMap<K,V> m) {
        }

        /**
         * This method is invoked whenever the entry is
         * removed from the table.
         */
        void recordRemoval(HashMap<K,V> m) {
        }
    }

由上述Entry我们知道,哈希数组的每个元素都维护了一个键值对、哈希值和下一元素的地址;

接下来我们看一看数据的储存于获取:

public V put(K key, V value) {
        if (key == null)
            return putForNullKey(value);
        //通过key.hashCode()生成相应的hash值
        int hash = hash(key.hashCode());
        //通过哈希数组的长度和hash值计算此元素应该被存储在哪个位置
        int i = indexFor(hash, table.length);
        //在第i条链表遍历 查看元素是否存在
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;//若存在则返回旧值
            }
        }
        //若不存在则添加新值 并返回null
        modCount++;
        addEntry(hash, key, value, i);
        return null;
    }

addEntry

 void addEntry(int hash, K key, V value, int bucketIndex) {
        Entry<K,V> e = table[bucketIndex];
        table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
        if (size++ >= threshold)
            resize(2 * table.length);
    }

若临界值小于表容量,则将表的容量扩大两倍:

void resize(int newCapacity) {
        Entry[] oldTable = table;
        int oldCapacity = oldTable.length;
        if (oldCapacity == MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return;
        }

        Entry[] newTable = new Entry[newCapacity];
        transfer(newTable);
        table = newTable;
        threshold = (int)(newCapacity * loadFactor);
    }

若临界值已经达到i最大整型值,则返回;否则重新创建一个哈希数组,并通过transfer重新计算hash值并且复制到新的哈希数组中(很耗时),最后重新定义临界值.

接下来我们看一下数据的获取:

 public V get(Object key) {
        if (key == null)
            return getForNullKey();
        //计算hash值
        int hash = hash(key.hashCode());
        //计算在那条链表上 并遍历
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
                return e.value;
        }
        return null;
    }

至此hashmap源码解析完毕.

上一篇下一篇

猜你喜欢

热点阅读