python小小白机器学习

二手车价格预测2:特征工程

2020-03-27  本文已影响0人  凡有言说

该系列是用于记录跟随Datawhale入门数据挖掘的笔记,感谢Datawhale与天池联合发起的赛事——二手车交易价格预测。

链接:零基础入门数据挖掘 - 二手车交易价格预测

一、函数导入

import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter

%matplotlib inline

二、数据清洗

1.载入数据

#训练集
train_data = pd.read_csv('C:/Users/Van/Desktop/Datawhale数据挖掘/used_car_train_20200313.csv',  engine='python', sep = ' ')
#测试集
test_data = pd.read_csv('C:/Users/Van/Desktop/Datawhale数据挖掘/used_car_testA_20200313.csv',  engine='python', sep = ' ')

2.简略观察数据

#训练集
train_data.head().append(train_data.tail())

#测试集
test_data.head().append(test_data.tail())

#训练集
train_data.columns

#测试集
test_data.columns

3.异常值处理

def outliers_proc(data, col_name, scale=3):
    """
    用于清洗异常值,默认用 box_plot(scale=3)进行清洗
    :param data: 接收 pandas 数据格式
    :param col_name: pandas 列名
    :param scale: 尺度
    :return:
    """

    def box_plot_outliers(data_ser, box_scale):
        """
        利用箱线图去除异常值
        :param data_ser: 接收 pandas.Series 数据格式
        :param box_scale: 箱线图尺度,
        :return:
        """
        iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))
        val_low = data_ser.quantile(0.25) - iqr
        val_up = data_ser.quantile(0.75) + iqr
        rule_low = (data_ser < val_low)
        rule_up = (data_ser > val_up)
        return (rule_low, rule_up), (val_low, val_up)

    data_n = data.copy()
    data_series = data_n[col_name]
    rule, value = box_plot_outliers(data_series, box_scale=scale)
    index = np.arange(data_series.shape[0])[rule[0] | rule[1]]
    print("Delete number is: {}".format(len(index)))
    data_n = data_n.drop(index)
    data_n.reset_index(drop=True, inplace=True)
    print("Now column number is: {}".format(data_n.shape[0]))
    index_low = np.arange(data_series.shape[0])[rule[0]]
    outliers = data_series.iloc[index_low]
    print("Description of data less than the lower bound is:")
    print(pd.Series(outliers).describe())
    index_up = np.arange(data_series.shape[0])[rule[1]]
    outliers = data_series.iloc[index_up]
    print("Description of data larger than the upper bound is:")
    print(pd.Series(outliers).describe())
    
    fig, ax = plt.subplots(1, 2, figsize=(10, 7))
    sns.boxplot(y=data[col_name], data=data, palette="Set1", ax=ax[0])
    sns.boxplot(y=data_n[col_name], data=data_n, palette="Set1", ax=ax[1])
    return data_n

# 我们可以通过该函数删除缺失值,比如power
# 是否删除需要自行判断
# 注意不能去删除test_data中对应的变量
train_data = outliers_proc(train_data, 'power', scale=3)
image.png

三、特征构造

1.树模型

1.1合并训练集和测试集

# 训练集和测试集放在一起,方便构造特征
train_data['train']=1
test_data['train']=0
data = pd.concat([train_data, test_data], ignore_index=True,  sort=False)

1.2构造变量:汽车使用时间

# 构造汽车使用时间变量:data['creatDate'] - data['regDate'] 
# 一般来说价格与使用时间成反比
# 注意:数据里有时间出错的格式,需要添加参数 errors='coerce'
data['used_time'] = (pd.to_datetime(data['creatDate'], format='%Y%m%d', errors='coerce') - 
                            pd.to_datetime(data['regDate'], format='%Y%m%d', errors='coerce')).dt.days

# 缺失数据处理
# 有15k个样本的时间是有问题的,我们可以选择删除,也可以选择放着。
# 这里不建议删除,因为删除缺失数据占总样本量过大有7.5%
# 可以先放着,因为如果使用 XGBoost 之类的决策树,其本身就能处理缺失值。
data['used_time'].isnull().sum()

1.3构造变量:城市名称

# 从邮编中提取城市信息,相当于加入了先验知识
data['city'] = data['regionCode'].apply(lambda x : str(x)[:-3])
data = data

1.4构造变量:汽车销售量(品牌)

train_gb = train_data.groupby("brand")
all_info = {}
for kind, kind_data in train_gb:
    info = {}
    kind_data = kind_data[kind_data['price'] > 0]
    info['brand_amount'] = len(kind_data)
    info['brand_price_max'] = kind_data.price.max()
    info['brand_price_median'] = kind_data.price.median()
    info['brand_price_min'] = kind_data.price.min()
    info['brand_price_sum'] = kind_data.price.sum()
    info['brand_price_std'] = kind_data.price.std()
    info['brand_price_average'] = round(kind_data.price.sum() / (len(kind_data) + 1), 2)
    all_info[kind] = info
brand_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={"index": "brand"})
data = data.merge(brand_fe, how='left', on='brand')

1.5数据分桶

#以 power 为例
bin = [i*10 for i in range(31)]
data['power_bin'] = pd.cut(data['power'], bin, labels=False)
data[['power_bin', 'power']].head()

1.6删除不需要数据

data = data.drop(['creatDate', 'regDate', 'regionCode'], axis=1)

1.7查看数据集信息

#数据格式
print(data.shape)

#变量信息
data.columns

1.8导出数据

# 目前的数据其实已经可以给树模型使用
data.to_csv('data_for_tree.csv', index=0)

2.LR模型

2.1查看数据分布

# 之所以分开构造是因为,不同模型对数据集的要求不同
data['power'].plot.hist()
image.png

我们刚刚已经对 train 进行异常值处理了,但是现在还有这么奇怪的分布是因为 test 中的 power 异常值。

train_data['power'].plot.hist()
image.png

所以我们其实刚刚 train 中的 power 异常值不删为好,可以用长尾分布截断来代替。

2.2取对数,做归一化

# power
from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
data['power'] = np.log(data['power'] + 1) 
data['power'] = ((data['power'] - np.min(data['power'])) / (np.max(data['power']) - np.min(data['power'])))
data['power'].plot.hist()
image.png
# kilometer
data['kilometer'].plot.hist()
image.png
# kilometer比较正常,所以我们可以直接做归一化
data['kilometer'] = ((data['kilometer'] - np.min(data['kilometer'])) / 
                        (np.max(data['kilometer']) - np.min(data['kilometer'])))
data['kilometer'].plot.hist()
image.png
# 除此之外 还有我们刚刚构造的统计量特征:
# 'brand_amount', 'brand_price_average', 'brand_price_max',
# 'brand_price_median', 'brand_price_min', 'brand_price_std',
# 'brand_price_sum'
# 这里不再一一举例分析了,直接做变换,
def max_min(x):
    return (x - np.min(x)) / (np.max(x) - np.min(x))

data['brand_amount'] = ((data['brand_amount'] - np.min(data['brand_amount'])) / 
                        (np.max(data['brand_amount']) - np.min(data['brand_amount'])))
data['brand_price_average'] = ((data['brand_price_average'] - np.min(data['brand_price_average'])) / 
                               (np.max(data['brand_price_average']) - np.min(data['brand_price_average'])))
data['brand_price_max'] = ((data['brand_price_max'] - np.min(data['brand_price_max'])) / 
                           (np.max(data['brand_price_max']) - np.min(data['brand_price_max'])))
data['brand_price_median'] = ((data['brand_price_median'] - np.min(data['brand_price_median'])) /
                              (np.max(data['brand_price_median']) - np.min(data['brand_price_median'])))
data['brand_price_min'] = ((data['brand_price_min'] - np.min(data['brand_price_min'])) / 
                           (np.max(data['brand_price_min']) - np.min(data['brand_price_min'])))
data['brand_price_std'] = ((data['brand_price_std'] - np.min(data['brand_price_std'])) / 
                           (np.max(data['brand_price_std']) - np.min(data['brand_price_std'])))
data['brand_price_sum'] = ((data['brand_price_sum'] - np.min(data['brand_price_sum'])) / 
                           (np.max(data['brand_price_sum']) - np.min(data['brand_price_sum'])))

2.3OneEncoder

# 对类别特征进行 OneEncoder
data = pd.get_dummies(data, columns=['model', 'brand', 'bodyType', 'fuelType',
                                     'gearbox', 'notRepairedDamage', 'power_bin'])

2.4查看数据集信息

#数据格式
print(data.shape)

#变量信息
data.columns

2.5导出数据

data.to_csv('data_for_lr.csv', index=0)

四、特征选择

1.过滤式

print(data['power'].corr(data['price'], method='spearman'))
print(data['kilometer'].corr(data['price'], method='spearman'))
print(data['brand_amount'].corr(data['price'], method='spearman'))
print(data['brand_price_average'].corr(data['price'], method='spearman'))
print(data['brand_price_max'].corr(data['price'], method='spearman'))
print(data['brand_price_median'].corr(data['price'], method='spearman'))
data_numeric = data[['power', 'kilometer', 'brand_amount', 'brand_price_average', 
                     'brand_price_max', 'brand_price_median']]
correlation = data_numeric.corr()

f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True,  vmax=0.8)
image.png

2.裹式

!pip install mlxtend  

from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from sklearn.linear_model import LinearRegression
sfs = SFS(LinearRegression(),
           k_features=10,
           forward=True,
           floating=False,
           scoring = 'r2',
           cv = 0)
x = data.drop(['price'], axis=1)
x = x.fillna(0)
y = data['price']
sfs.fit(x, y)
sfs.k_feature_names_ 

from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
import matplotlib.pyplot as plt
fig1 = plot_sfs(sfs.get_metric_dict(), kind='std_dev')
plt.grid()
plt.show()
特征工程.png
上一篇下一篇

猜你喜欢

热点阅读