生信

文献精读丨GWAS+TRN多组学方法揭示小麦穗发育调控过程

2022-12-09  本文已影响0人  生信分析笔记

文献精读笔记

英文题目:Systematic mining and genetic characteriza;tion of regulatory factors for wheat spike development

中文题目:小麦穗发育调控因子的系统挖掘及遗传特性研究

通讯作者:Jun Xiao,Chinese Academy of Sciences,Beijing, China

发布时间:2022.11.11 bioRxiv

doi:10.1101/2022.11.11.516122

论文初步介绍

研究目的

小麦每穗粒数是决定单产的重要性状,增加每穗小穗数能够增加每穗粒数并最终增加产量,提高花序分生组织的活性和创制多小穗的种质是提高小麦小穗数的有效途径,提高穗粒数是高产、超高产小麦栽培和品种选育的主攻目标。

该文章从转录组学表观遗传学基因组学等多组学手段,深入解析了小麦穗发育过程中转录因子的调控网络和层次关系。

摘要

① 本文将多组学数据,系统地探讨了小麦穗发育的遗传调控网络。产生了8个发育时期的转录组和表观基因组图谱。

② 作者发现染色质可及性H3K27Me3组蛋白的变化与开花过程中转录组改变密切相关。

③ 构建了一个核心转录调控网络(TRN),该网络可能驱动各种分生组织细胞转换形成穗。

④ 将TRN与全基因组关联分析(GWAS)相结合,共鉴定出260个转录因子,其中52个是作物特有的转录因子,但大部分未被研究。

⑤ 进一步验证了TRN提出的TASPL6、TsMADS34和TAMADS14之间的多层调控模块。TaMYB4-A可能通过调节激素稳态或信号传导从而调节可育小穗数,作用于下游并受WFZP抑制。

⑥ 在国内育种过程中,逐渐筛选出TaMYB4-A的优势等位基因,表达量高,小穗可育性强。本文为系统地理解小麦穗发育的遗传调控提供了宝贵的资源和新的策略。

创新点

注释缩写信息补充

技术介绍

  1. ATAC-seq:Assay for Transposase Accessible Chromatin with high-throughput sequencing,利用转座酶研究染色质可及性的高通量测序技术,属于表观遗传学研究领域。

真核生物的基因组DNA是被高度紧密折叠包装的,DNA与组蛋白缠绕形成核小体,串珠状的核小体经过螺旋折叠等方式盘绕成染色体。DNA需要进行转录等活动的时候,DNA的高级结构才会部分解开,裸露出需要与转录因子等反式作用元件进行作用的DNA双链(未经组蛋白或核小体保护的DNA部位),便于转录。染色质的这种特性叫做染色质的可及性(chromatin accessibility),而暴露的这段染色质称为“开放染色质”(open chromatin),研究发现,开放染色质通常是转录因子、增强子、绝缘子或者其他调控蛋白结合的片段,结合的过程仿佛是触发了细胞内的开关,可以影响细胞内基因复制以及调控基因的转录活性。转座酶可以将携带的DNA片段(接头)插入开放的染色质区域,可以得到全基因组上处于开放状态的染色质区域。

  1. RNA-seq:转录组测序技术,就是用高通量测序技术进行测序分析,反映出mRNA,smallRNA,noncodingRNA等或者其中一些的表达水平。
  2. H3K27me3:表观遗传修饰,H3是组蛋白,H3K27me3表示组蛋白H3的第27个氨基酸上三甲基化,这是一个标记,表明赖氨酸27三甲基化的组蛋白。
  3. TRN:转录调控网络(transcriptional regulation network)是由转录因子(transcription factors,TF)和其目标基因的调控关系所构成的有向网络
  4. WFZP:一个控制小麦穗形态的基因。New Phytologist发表了倪中福教授团队题为FRIZZY PANICLE defines a regulatory hub for simultaneously controlling spikelet formation and awn elongation in bread wheat的论文,其中讲到WFZP抑制小穗形成但促进芒伸长相关内容。
  5. TSS:转录起始位点
  6. DAPR:differential accessible promoter regions ,差异可及启动子区
  7. Motif:模体,基序。一段典型的序列或者一个结构。

是指构成任何一种特征序列的基本结构。通俗来讲,即是有特征的短序列,拥有生物学功能的保守序列,可能包含特异性的结合位点,或者是涉及某一个特定生物学过程的有共性的序列区段。基于motif序列的提取,我们可以预测潜在的结合位点。比如转录因子的结合位点,其motif往往意味着某蛋白结构域与DNA碱基序列的相互作用

  1. TILLING:即Targeting Induced Local Lesions IN Genomes(定向诱导基因组局部突变技术)
  2. Cleavage Under Targets and Tagmentation (CUT&Tag):目标下的切割和干扰(Cut&Tag)

小麦穗部性状

  1. GNPS:grain number per spike,每穗粒数
  2. SNS:spikelet number per spike ,每穗小穗数
  3. FSPS:fertile spikelet number per spike,每穗可育的小穗数
  4. DSNS:degenerated spikelet number per spike ,每穗退化的小穗数
  5. FNPS:floret number per spikelet ,每小穗的小花数
  6. SD:spikelet density,小穗密度
  7. SL:spike length ,穗长
  8. IM:inflorescence meristem,花序分生组织
  9. SM:spikelet meristem,小穗分生组织

小麦穗发育阶段

  1. SAM:shoot apex meristem,顶端分生组织

  2. EL:elongation stage,伸长期(生长锥伸长期

    茎生长锥伸长生长,长度大于宽度,呈透明光滑的圆锥形。

  3. SR:single edge ,单棱期(穗轴节片原基分化期

    生长锥迅速伸长,生长锥的基部由下而上形成像叶原基的环状突起,即为苞叶原始体。每片苞叶原始体之间即为穗轴节片。每个苞叶原基呈棱形,故称单棱期。

  4. DR:double ridge,二棱期

    小穗原基分化期,苞叶原基发育逐渐停止,在幼穗中部两个相邻苞叶原基之间最先长出一个突出,即小穗原始体,呈棱形,开始较小,以后逐渐增大,在生长锥上成长大、小棱相间存在故称二棱期。

  5. SMI:spikelet meristem initiation stage,小穗分生组织起始期

  6. GPD:glume primordium differentiation stage ,护颖原基分化期

    幼穗中部两侧小穗原基已分化结束,顶端小穗原基逐渐分化,此时每穗小穗数基本定型,中部小穗基部形成两个碗状突起,后发育成颖片。

  7. FMI:floral meristem initiation stage,小花分生组织起始期

  8. FOP:floral organ primordia differentiation stage 小花原基分化阶段

    小花原基分化先从幼穗中部,然后向上向下相继分化。

研究结果

转录组和染色质图谱

染色质环境对调控的影响

基因共表达和转录调控网络

随着生殖生长(DR)的开始,依次经历SMI、GPD、FMI和FOP过程形成穗结构,这是决定SNS每穗小穗数的关键,有助于粮食产量。 因此,作者分析了基因共表达情况和调控网络,目的是找出控制这一过程的潜在因素。

多组学数据挖掘调控因子

染色质的开放区域是建立转录调控关系的关键

验证调控因子遗传结构

保守型调控因子中,TaSPL6, TaMADS34, TaMADS15同样出现在之前提到的转录调控网络中,因此,作者接来来验证它们是否会参与穗发育过程。

验证新发现的调控因子

作者为了验证该模型在识别新型小麦穗发育调节因子方面的能力,研究了Kronos、Cadenza、KN9204的Meta Tilling突变系的穗发育缺陷,将其突变位点全外显子测序鉴定。

全外显子测序:利用序列捕获技术将全基因组中所有外显子区域DNA序列捕获,富集后进行高通量测序的方法。可用于研究已知基因的单核苷酸多态性位点、插入缺失位点等,不适合用于研究基因组结构的变异。

TaMYB4-A对穗发育的影响

为了进一步了解TRN和GWAS技术在单个基因分子功能研究中的应用前景,作者选取了一个新型调控因子TaMYB4-A进行深入的研究。TaMYB4-A是TRN中的TFs之一(在前期调控阶段)

TaMYB4-A关键SNP变异影响

最后,作者想知道TaMYB4-A的不同单倍型是如何影响小麦穗部结构,因此进行关联分析

讨论部分

小麦是最早被驯化的作物之一,驯化与穗部结构变化联系在一起,以利于收获和提高产量。提高产量也是育种的主要目标之一。 对于谷类作物来说,穗结构通过影响小穗和小花的发育,在很大程度上决定着籽粒数量,研究控制穗部结构的分子机制将有助于设计育种过程.

作者制作了一个基于时间序列的表观基因组图谱,包括从营养发育到生殖生长过程中各种类型的组蛋白修饰,染色质可及性变化和转录组数据,这将为系统研究小麦穗发育的关键调控因子提供有价值的数据资源。

总之,作者结合多组学数据揭示了小麦穗发育过程中的转录调控网络TRN和表观遗传变化。结合GWAS分析,作者发现了几十个影响小穗结构的新调控因子,揭示了TaMYB4-A启动子内WFZP结合位点的SNP变异在我国小麦育种过程中起着关键作用。

材料与方法

材料:冬小麦品种KN9204

环境:温室

取样:在8个发育阶段,各取10-50个小穗

转基因植株

利用冬小麦品种KN9204进行基因序列扩增,春小麦品种Fielder获得转基因小麦植株

测序数据处理

RNA数据分析

ATAC-seq数据分析

差异染色质修饰富集区检测

构建基因调控网络

  1. 通过PCA分析对穗发育过程中表达的基因进行分组
  2. 计算相邻组之间的欧几里得距离
  3. 进行坐标缩放,计算基因的拟合曲线
  4. 根据基因表达情况和标准化的数据,对每个基因进行PCA分析

构建系统发育树

GWAS全基因组关联分析

基于基因的关联分析

利用287份中国小麦微型核心种质的全基因组外显子捕获测序数据,确定了TaMYB4-A基因6kb区的单核苷酸多态性,包括外显子区、内含子区、4kb启动子区和0.5kb 3'-UTR区。

数据获取

荧光素酶实验

LUC荧光素酶,可以极其灵敏、高效地检测基因的表达。是检测转录因子目的基因启动子区DNA相互作用的一种检测方法。

荧光素酶基因报告是指以荧光素(luciferin)为底物来检测萤火虫荧光素酶(fireflyluciferase)活性的一种报告系统。荧光素酶可以催化luciferin氧化成oxyluciferin,在luciferin氧化的过程中,会发出生物荧光,是检测转录因子目的基因启动子区DNA相互作用的一种检测方法。

原位杂交

原位杂交技术的基本原理是利用核酸分子单链之间有互补碱基序列,将有放射性或非放射性的外源核酸(即探针)与组织、细胞或染色体上待测DNA或RNA互补配对,结合成专一的核酸杂交分子,经一定的检测手段将待测核酸在组织、细胞或染色体上的位置显示出来。


本文由mdnice多平台发布

上一篇 下一篇

猜你喜欢

热点阅读