预训练的模型的资源获取
2022-07-15 本文已影响0人
可能性之兽
集大成
DeepDA: https://github.com/jindongwang/transferlearning/tree/master/code/DeepDA
DeepDG: https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG
CV方向
Tensorflow Hub
TIMM
import timm
import torch
model = timm.create_model('resnet34')
x = torch.randn(1, 3, 224, 224)
model.eval()
model(x).shape
##or funting
model.fc=nn.Linear(model.fc.in_features,n_classes) ##n_classes就是要调的
NLP
预训练模型的下载和使用 - 张耀灵的文章 - 知乎
https://zhuanlan.zhihu.com/p/515599304
huggingface transformers预训练模型如何下载至本地,并使用? - 于晨晨的文章 - 知乎
https://zhuanlan.zhihu.com/p/147144376
Huggingface
Hugging Face – The AI community building the future.
Hugging Face · GitHub
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
其他
因特尔的
主要是pytorch,但是有点老了
GitHub - Cadene/pretrained-models.pytorch: Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.