Machine Learning - Week 4 Multi-

2018-12-31  本文已影响0人  有何不可_b7e1

多分类的一种方法是使用one-vs-all logistic regression,也就是对每一类就计算一个估计函数,预测时计算属于每一类的概率,取最大者。

one-vs-all的cost function和grad和上周的完全一致,正规化:

lrCostFunction.m

function [J, grad] = lrCostFunction(theta, X, y, lambda)

% Initialize some useful values

m = length(y); % number of training examples

J = 0;

grad = zeros(size(theta));

n1 = length(theta);

% X size: m * (n+1), theta size: (n+1) * 1, h size: m * 1

% for every example i compute hi

h = sigmoid(X * theta);

% resularization

Jbias = lambda / (2 * m) * sum((theta .* theta)(2:n1));

% y size: m * 1, log(h) size: m * 1

% for every example i compute yi*log(hi) and (1-yi)*log(1-hi)

J = -1 / m * (y' * log(h) + (1 - y)' * log(1 - h)) + Jbias;

% when j = 0 (index = 1)

grad(1) = X'(1, :) * (h - y) / m;

% when j > 0 (index > 1)

Tbias = lambda * theta(2:n1) / m;

grad(2:n1) = (X'(2:n1, :) * (h - y)) / m + Tbias;

% =============================================================

grad = grad(:);

end

梯度下降结束后,保存每个类的theta:

oneVsAll.m

function [all_theta] = oneVsAll(X, y, num_labels, lambda)

% Some useful variables

m = size(X, 1);

n = size(X, 2);

all_theta = zeros(num_labels, n + 1);

% Add ones to the X data matrix

X = [ones(m, 1) X];

options = optimset('GradObj', 'on', 'MaxIter', 50);

for c=1:num_labels

  initial_theta = zeros(n+1, 1);

  theta = fmincg(@(t)(lrCostFunction(t, X, (y==c), lambda)), initial_theta, options);

  all_theta(c, :) = theta;

end

% =========================================================================

end

对每个样例,和上面得到的每个类的theta,计算属于每个类的概率,取概率最大的,注意用[cls, index] = max(A, [], 2)获取矩阵中每一行最大值的索引:

predictOneVsAll.m

function p = predictOneVsAll(all_theta, X)

m = size(X, 1);

num_labels = size(all_theta, 1);

% You need to return the following variables correctly

p = zeros(size(X, 1), 1);

% Add ones to the X data matrix

X = [ones(m, 1) X];

% X size: m * (n+1), all_theta size: c * (n+1)

% for each example, compute 10 classes hypothesis, m * c

all_h = sigmoid(X * all_theta');

% for each example, get the max hypothesis index

[cls, index] = max(all_h, [], 2);

p = index;

end

多分类的另一种方法是使用神经网络,目前只需要前向传播即可:

predict.m

function p = predict(Theta1, Theta2, X)

% Useful values

m = size(X, 1);

num_labels = size(Theta2, 1);

p = zeros(size(X, 1), 1);

% Add ones to the X data matrix

% X size: m * 401

X = [ones(m, 1) X];

% Theta1 size: 25 * 401, => m * 25

A1 = sigmoid(X * Theta1');

m1 = size(A1, 1);

% A1 size: m * 26

A1 = [ones(m1, 1) A1];

% Theta2 size: 10 * 26, => m * 10

A2 = sigmoid(A1 * Theta2');

% for each example, get the max hypothesis index

[cls, index] = max(A2, [], 2);

p = index;

end

上一篇 下一篇

猜你喜欢

热点阅读