人工不智能XLA编译器

开篇:XLA是什么?

2022-02-25  本文已影响0人  A君来了

XLA(Accelerated Linear Algebra)是专用于机器学习的编译器,机器学习的运算中99%都是向量乘以矩阵、矩阵乘以矩阵的计算,XLA是专门用来优化这些计算的。

How to

举个例子,运行在GPU上的model_fn函数会顺序调用multiplyaddreduce_sum这三个op,而且multiply,也就是y * z的计算结果会先从GPU拷贝回host,再拷贝到device作为add的input,同样的,add的计算结果也会以相同的方式传递给下一个op。

def model_fn(x, y, z):
  return tf.reduce_sum(x + y * z)

显然,对于整个函数来说,将中间变量在host和device间来回倒腾是没有意义的。因此,如果把函数看作一个op,那在计算中产生的中间结果就不必返回到host,少了数据传输的时间开销,就可以大幅提升运算效率。

这种将多个op融合成一个op的方法就称为fuse,当前fuse的技术路线有:

性能

XLA的优化当然不只是fuse,还有对计算图的优化,包括删除无效指令、减少内存占用、替换复杂指令等优化。下图是官方提供的性能报告,经XLA优化过后,Tensorflow BERT MLPerf的训练性能提升了~7倍。除了Tensorflow外,XLA还支持JAXJuliaPyTorchNx等前端。

https://www.tensorflow.org/xla

Just in time(JIT)

jit是指在首次运行时将函数编译成二进制程序,后续再调用该函数时直接运行先前编译好的程序而非python code。@tf.funciton修饰的函数(包括它的子函数)会做jit。除非signature发生了变化,也就是input的shape或dtype和编译时不同,否则get_MSE是不需要重复编译的。

@tf.function
def get_MSE(y_true, y_pred):
  print("compiling ...")
  sq_diff = tf.pow(y_true - y_pred, 2)
  return tf.reduce_mean(sq_diff)

get_MSE(tf.constant(1.0), tf.constant(2.0)) # compile
get_MSE(tf.constant(3.0), tf.constant(4.0)) # It won't recompile
get_MSE(tf.ones([2, 2]), tf.ones([2, 2]) # compile again for new signature

@tf.function将函数内的ops替换成一组(XlaCompile, XlaRun) ops,在运行时前者负责编译,并将编译结果--executable保存到cache,后者负责运行executable。如果cache里已经有编译好的程序就不需要编译了,例如get_MSE(tf.constant(3.0), tf.constant(4.0))

HLO

XLA编译器支持的语言(IR)是HLO(High Level Operations),顾名思义这些语言是由一个个op组成,因此,我们在编译前需要先从python code中提取出所有ops,再将它们转换成HLO。

JAX通过tracing的方式,从@jax.jit修饰的函数中提取ops,这些ops通过jaxpr来表示。然后再通过XLA client提供的API为ops生成相应的HLO。PyTorch/XLA也是采用类似的方法来生成HLO。

Tensorflow的tf2xla为每个Op创建了一个同名的XlaOp用于生成HLO,XlaOp派生于Op,使用相同的注册机制,因此,只要把要编译的子图根据拓扑排序运行一遍就能生成它的HLO。

编译

HLO先经过一系列pass优化后再将HLO lowering成ISA,最后将编译好的二进制封装到executable

https://www.tensorflow.org/xla/architecture

Executable

除了二进制程序,它还包含运行该程序所需要的infos和options。调用executable.run()就可以执行计算图。

END

上一篇下一篇

猜你喜欢

热点阅读