(转)物流优化算法处理流程及算法服务平台建设

2020-04-20  本文已影响0人  idealfeng

转自:吉勍Personal

http://www.jiqingip.com/page9001?article_id=94

算法处理流程

物流方向的大多数业务算法处理流程基本是按照模型建立、算法开发、算法测试流程进行,具体步骤如下:

模型建立

大多数优化问题都能构建成线性规划、非线性规划或混合整数规划等数学模型。这些模型需要根据实际业务确定,模型主要包含以下因素:

1)  优化目标

2)  决策变量

3)  约束条件

算法开发

模型的求解可根据实际的业务情况(问题复杂程度、数据规模、计算时效要求)等采用合适的精确算法和近似的最优化算法进行求解。

模型精确计算

模型精确求解有一些商业和开源的求解器,如下:Gurobi、Cplex、SCIP、OR-Tools、Glpk等,可以根据实际情况选择合适的求解器。

最优化算法计算

最优化算法也有很多,比如变邻域搜索算法、自适应大邻域搜索算法、禁忌搜索算法、模拟退火算法、遗传算法、蚁群优化算法、粒子群优化算法、人工鱼群算法、人工蜂群算法等,可以根据适用情况选择。

业务相关开放项目计算

解物流领域的某些项目可以利用一些开放性的项目来求解,如求解车辆路径问题的jsprit、求解排程类问题的optaplanner等,这类问题在模型建立好之后可以调用这些开放性项目来求解。

算法测试

生产数据测试

物流方向的项目基本都是优化类型的项目,每个项目对应的业务环节一直在运行,涉及到的优化问题或者是业务系统简单处理,或者人为计算,对于算法有效性的检测可以把这部分生产数据独立抽离出来,经过优化算法计算之后跟原有系统数据进行相关的对比,来评价算法的优化效果。

仿真测试

物流的优化不像互联网应用可以采用流量灰度的方式进行直接的验证,并且物流系统的链路非常长,单点的改变可能引起上下游的变化。在决策优化的过程中需要同时使用优化求解及仿真技术来验证或提供决策依据。仿真测试验证大致需要以下过程:

1)  定义仿真模型确定绩效指标体系

2)  输入算法结果数据到仿真模型进行仿真计算

3)  根据仿真模型的仿真结果计算绩效指标,以反馈算法的优化效果。

算法服务平台建设

实际业务中的很多应用场景都可以抽象成同一类算法问题。算法在解决不同应用场景业务问题时,相关模型、处理流程及计算方法也都大致相同,因此可以对这类问题的算法,按照其处理流程从业务中剥离出来,封装好算法的输入、输出及计算逻辑,构建统一的算法服务平台。

VRP算法服务

比较经典的VRP问题就会应用到很多业务场景,即时配、大件配送、冷链配送、门店补货等。这些业务场景对于大型零售商来说是比较常见的,因此构建可灵活配置的VRP算法服务平台,可达成一次构建,多场景应用的效果。

排班算法服务

排班问题也是一样,无论是生产线工人排班、司机排班、客服排班还是门店工作人员排班,这些都是排班问题应用的业务场景。通过构建可灵活配置的排班算法服务平台,可解决多个业务场景的排班问题。

装箱算法服务

装箱问题也有着丰富的应用场景,无论是商品配送的车辆装箱、运输网络的车型推荐及包装作业的包材推荐都是装箱问题的业务场景。构建灵活的装箱算法服务平台,可通过配置有效的解决各业务场景的装箱问题。

运筹规划算法服务

无论是上面提到的一些算法服务还是其他组合优化问题,都可以构建成运筹优化问题来解决。大家熟知的google or-tools就是组合优化问题的工具包。我们也可以根据自身的业务特点构建适合业务场景的运筹规划算法服务,底层可以调用不同的求解器,可以是商业求解器,如gurobi、cplex等,也可以是开源求解器,如scip、glpk等;也可以是一些最优化算法,如邻域搜索等。

上一篇下一篇

猜你喜欢

热点阅读