Android Framework层源码分析Android学习记录

Handler源码分析笔记

2022-03-05  本文已影响0人  oddly

Handler

我们都知道Handler由MessageMessageQueueHandlerLooper组成,接下来我们带着问题,从源码中寻找 Handler 的具体流程与实现。

问题

解析

首先从轮询器的启动开始,所有的java程序都有一个main方法作为程序的入口,而Android中这个main方法在ActivityThread中

public static void main(String[] args) {
        ...

        Looper.prepareMainLooper();

        ...
            
        ActivityThread thread = new ActivityThread();
        thread.attach(false, startSeq);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }

        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        Looper.loop();

        throw new RuntimeException("Main thread loop unexpectedly exited");
    }
}

在代码中我们可以看到 Looper.prepareMainLooper()和Looper.loop() 两个方法

先从Looper.prepareMainLooper()进行分析

    private static Looper sMainLooper;  // guarded by Looper.class 保存Looper类
    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

在其中prepareMainLooper,Looper将全局静态变量 sMainLooper 赋值和调用了 prepare() 方法

    // sThreadLocal.get() will return null unless you've called prepare().
    static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }
    //myLooper就是调用了sThreadLocal的get方法
    public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }

在 prepare 中调用了全局静态变量 sThreadLocal 的 set 方法

那么ThreadLocal是什么呢?

ThreadLocal本质是一个Map,不过其中的 key 值是线程 Thread ,它通过线程来存储和读取数据。正如其名,用来存储线程本地数据【避免其他线程读取或修改】。

可就是说在此处,sThreadLocal 中存储了与主线程对应的 Looper 实例,只要是主线程中调用sThreadLocal 的get方法就能获取这个轮询器,若是其他子线程就获取不到这个轮询器

然后就到了讲解 Looper.loop() ,也就是在这里开始死循环,使得主线程一直存活

public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;
    
        ...
            
        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            ...

            final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
            final long dispatchEnd;
            try {
                msg.target.dispatchMessage(msg);
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            ...
            /*
            * 经过上述步骤消息都未被处理,于是将其回收
            */
            msg.recycleUnchecked();
        }
    }

在 loop 中我们主要看到 MessageQueue 、 msg.target.dispatchMessage(msg) 这三处地方

我们先看 msg.target.dispatchMessage(msg) 之后,回来了解 MessageQueue

public final class Message implements Parcelable {
    ...
    Handler target;
    Runnable callback;
    ...
}

从 Message 中了解 target 就是 Handler,而 callback 是用户设置的回调任务,只要不设置这个 callback 就会进入 handleMessage

public class Handler {
    ...
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            //这里调用了用户自定义的handleMessage去处理业务逻辑
            handleMessage(msg);
        }
    }
    ...
}

这里我们看到了消息时如何被得回应的,那么我们只需要知道 Message 是怎么发送的和在什么时候给 target 赋值确保Handler对象不出错。

Message 是如何发送的?这个问题想必都知道答案

public class Handler {
    final Looper mLooper;
    final MessageQueue mQueue;
    ...
    public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }
    
    public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }
    //最终进入该方法,此处就出现了 MessageQueue
    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }
    
    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;//在此处Handler给Message的target赋值
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }
    ...
}

经过一层一层的调用,最终Handler调用了 enqueueMessage 方法,将 Message 放入它的全局变量MessageQueue中,且将Message的target赋值为this【发送消息的Handler本身】

那么我们知道了发送的消息最终去向【MessageQueue】,那么Handler中的MessageQueue又是什么时候初始化的?

    //我们平常使用的Handler无参构造函数最终都会到这里
    public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }
        //此处就是为什么子线程不能创建Handler的原因
        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread " + Thread.currentThread()
                        + " that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

mLooper = Looper.myLooper() 之前我们分析过 myLooper 就是调用了sThreadLocal的get方法,此处只有主线程才有对应的 Looper 实例存在,这也就是为什么子线程中不能用无参构造方法实例化Handler,如果创建会报下列错误提示

java.lang.RuntimeException: Can't create handler inside thread that has not called Looper.prepare()

当然也不是没有解决方案,不是没有 Looper 报错吗,那就给呗!!!解决方案

继续向下,我们看到 mQueue = mLooper.mQueue ,也就是说 MessageQueue 是从Looper中获取的

public final class Looper {
    private static Looper sMainLooper;  // guarded by Looper.class
    final MessageQueue mQueue;
    final Thread mThread;
    ...
    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }
    ...
}

嗯,MessageQueue 对象在私有构造函数中就已经实例化了,那么还记得什么时候调用了Looper的构造函数吗?

绕了一圈终于到了讲解 MessageQueue 了

public final class MessageQueue {
    Message mMessages;//
    ...
    boolean enqueueMessage(Message msg, long when) {
        ...
        synchronized (this) {
            if (mQuitting) {//是否退出,只有调用了quit方法后是true
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }
            msg.markInUse();
            //SystemClock.uptimeMillis() + delayMillis
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }
}

此时你可能有些疑惑,不是队列吗,那么为什么没有数组或者List呢?因为 MessageQueue 采用链表的方式实现队列。

public final class Message implements Parcelable {
    ...
    // sometimes we store linked lists of these things
    /*package*/ Message next;
    //最大Message池为50个
    private static final int MAX_POOL_SIZE = 50;
    ...
}

我们将 if 语句分开看

Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
    // New head, wake up the event queue if blocked.
    msg.next = p;
    mMessages = msg;
    needWake = mBlocked;
}

首先Message p被赋值为全局变量 mMessages【我称其为“即将发送Message”】如果

其中一个成立,将 msg 的 next 指向 p ,在将 mMessages 赋值为 msg【实际上就是将msg放在队列最前面】

else {
// Inserted within the middle of the queue.  Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
    prev = p;
    p = p.next;
    if (p == null || when < p.when) {
        break;
    }
    if (needWake && p.isAsynchronous()) {
        needWake = false;
    }
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}

到else,基本就是 mMessages有值且 msg 发送事件的等待时间 大于 mMessages,于是就把 msg 放入链表中,通过循环将 msg 放入链表的合适位置,确保队列中的元素等待时间是递增的

既然已经讲了存放,那么就该到读取了

    Message next() {
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    //基本不会进入这个if
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

此处我们看到了MessageQueue调用了 native 方法【就是java调用了c方法】,其具体的实现在 /frameworks/base/core/jni/android_os_MessageQueue.cpp 点击此处查看

//可以理解为阻塞,ptr相当于Message指针,timeoutMillis阻塞时间
private native void nativePollOnce(long ptr, int timeoutMillis); 
//唤醒,之前在enqueueMessage中有调用该方法唤醒
private native static void nativeWake(long ptr);

之后我们主要看 next 对 return 有关的部分

final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
//msg 对应的 Handler 被销毁,于是取出队列中的下一个 Message
if (msg != null && msg.target == null) {
    do {
        prevMsg = msg;
        msg = msg.next;
    } while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
    //还没有到 msg 的发送时间,需要阻塞等待
    if (now < msg.when) {
        // 下一条消息未准备好。设置一个超时时间,当它准备好时唤醒。
        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
    } else {
        // 到 msg 的发送时间
        mBlocked = false;
        //将 mMessages 变为 msg 的 next
        if (prevMsg != null) {
            prevMsg.next = msg.next;
        } else {
            mMessages = msg.next;
        }
        msg.next = null;
        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
        msg.markInUse();
        return msg;
    }
} else {
    // nextPollTimeoutMillis = -1 代表nativePollOnce将一直阻塞直到被唤醒
    nextPollTimeoutMillis = -1;
}

到了这里Handler的源码分析就结束了,可以再回去看看Handler的流程图是不是会有新的感悟

上一篇下一篇

猜你喜欢

热点阅读