ES5.6 search流程与scroll
ES search大致流程
请求转化,由RestSearchAction转为TransportSearchAction,执行其doExecute()方法
1、如果查询请求的索引含有正则表达式和别名,找出具体的索引
indices = indexNameExpressionResolver.concreteIndices(clusterState, searchRequest.indicesOptions(),
timeProvider.getAbsoluteStartMillis(), localIndices.indices());
2、找出routing,并根据routing找出shard
Map<String, Set<String>> routingMap = indexNameExpressionResolver.resolveSearchRouting(clusterState, searchRequest.routing(),
searchRequest.indices());
GroupShardsIterator<ShardIterator> localShardsIterator = clusterService.operationRouting().searchShards(clusterState,
concreteIndices, routingMap, searchRequest.preference());
3、解析请求中的权重boost
Map<String, Float> concreteIndexBoosts = resolveIndexBoosts(searchRequest, clusterState);
4、根据请求的类型选择不同的query类
switch(searchRequest.searchType()) {
case DFS_QUERY_THEN_FETCH:
searchAsyncAction = new SearchDfsQueryThenFetchAsyncAction(logger, searchTransportService, connectionLookup,
aliasFilter, concreteIndexBoosts, searchPhaseController, executor, searchRequest, listener, shardIterators,
timeProvider, clusterStateVersion, task);
break;
case QUERY_AND_FETCH:
case QUERY_THEN_FETCH:
searchAsyncAction = new SearchQueryThenFetchAsyncAction(logger, searchTransportService, connectionLookup,
aliasFilter, concreteIndexBoosts, searchPhaseController, executor, searchRequest, listener, shardIterators,
timeProvider, clusterStateVersion, task);
break;
default:
throw new IllegalStateException("Unknown search type: [" + searchRequest.searchType() + "]");
}
插播一条DFS_QUERY_THEN_FETCH与QUERY_THEN_FETCH的区别。
- QUERY_THEN_FETCH
请求执行有两个阶段。第一个阶段就是查询所有相关的shards。所有的shards执行请求并根据form和size返回一个排好序的结果。协调节点获取到所有的信息后merge并resort,然后根据form和size取出结果。第二个阶段则是根据第一阶段的结果在相应的shard上取出数据。 - DFS_QUERY_THEN_FETCH
与QUERY_THEN_FETCH几乎一样。只有在第一阶段为了更精确的打分,计算的是分布式的term frequencies。
5、SearchQueryThenFetchAsyncAction中则是执行标准的查询流程:
- query
- fetch
- merge
SearchQueryThenFetchAsyncAction标准查询流程
1、Query
首先遍历shard,执行shard查询请求。
for (final SearchShardIterator shardIt : shardsIts) {
shardIndex++;
final ShardRouting shard = shardIt.nextOrNull();
if (shard != null) {
performPhaseOnShard(shardIndex, shardIt, shard);
} else {
// really, no shards active in this group
onShardFailure(shardIndex, null, null, shardIt, new NoShardAvailableActionException(shardIt.shardId()));
}
}
每个shard通过SearchTransportService发送query请求:
getSearchTransport().sendExecuteQuery(getConnection(shardIt.getClusterAlias(), shard.currentNodeId()),
buildShardSearchRequest(shardIt), getTask(), listener);
本地则是执行TransportService的sendLocalRequest方法.最终调用的是
handler.messageReceived(request, channel);
此处的channel是DirectResponseChannel,而此处的handler则是TransportSearchAction 初始化的时候写入SearchTransportService中的。
transportService.registerRequestHandler(QUERY_ACTION_NAME, ShardSearchTransportRequest::new, ThreadPool.Names.SEARCH,
new TaskAwareTransportRequestHandler<ShardSearchTransportRequest>() {
@Override
public void messageReceived(ShardSearchTransportRequest request, TransportChannel channel, Task task) throws Exception {
SearchPhaseResult result = searchService.executeQueryPhase(request, (SearchTask)task);
channel.sendResponse(result);
}
});
因此,最终执行的是searchService的executeQueryPhase方法。
真正的query本地查询:
1)生成一个searchContext,然后将request写入context:
final DefaultSearchContext searchContext = new DefaultSearchContext(idGenerator.incrementAndGet(), request, shardTarget,
engineSearcher, indexService, indexShard, bigArrays, threadPool.estimatedTimeInMillisCounter(), timeout, fetchPhase);
parseSource(context, request.source());
2)queryPhase预处理。比如说如果请求没有query,默认为match_all,如果没有boost,采用默认的值等等
queryPhase.preProcess(context);
3)执行查询
loadOrExecuteQueryPhase(request, context);
loadOrExecuteQueryPhase中则是调用queryPhase执行查询:
queryPhase.execute(context);
在queryPhase中执行真正的query查询:
1)重写query,比如说 讲一个prefixQuery转化为多个包含termQuery的BoolQuery
assert query == searcher.rewrite(query); // already rewritten
2)将各个子查询求用Collector包裹,Collector传给lucene,进行真正的lucene查询
if (terminateAfterSet) {
final Collector child = collector;
// throws Lucene.EarlyTerminationException when given count is reached
collector = Lucene.wrapCountBasedEarlyTerminatingCollector(collector, searchContext.terminateAfter());
if (doProfile) {
collector = new InternalProfileCollector(collector, CollectorResult.REASON_SEARCH_TERMINATE_AFTER_COUNT,
Collections.singletonList((InternalProfileCollector) child));
}
}
if (searchContext.parsedPostFilter() != null) {
final Collector child = collector;
// this will only get applied to the actual search collector and not
// to any scoped collectors, also, it will only be applied to the main collector
// since that is where the filter should only work
final Weight filterWeight = searcher.createNormalizedWeight(searchContext.parsedPostFilter().query(), false);
collector = new FilteredCollector(collector, filterWeight);
if (doProfile) {
collector = new InternalProfileCollector(collector, CollectorResult.REASON_SEARCH_POST_FILTER,
Collections.singletonList((InternalProfileCollector) child));
}
}
// plug in additional collectors, like aggregations
final List<Collector> subCollectors = new ArrayList<>();
subCollectors.add(collector);
subCollectors.addAll(searchContext.queryCollectors().values());
collector = MultiCollector.wrap(subCollectors);
//最后包裹一个Cancellable
if (collector != null) {
final Collector child = collector;
collector = new CancellableCollector(searchContext.getTask()::isCancelled, searchContext.lowLevelCancellation(), collector);
if (doProfile) {
collector = new InternalProfileCollector(collector, CollectorResult.REASON_SEARCH_CANCELLED,
Collections.singletonList((InternalProfileCollector) child));
}
}
3)执行lucene的查询
searcher.search(query, collector);
4)将查询结果以TopDocs的方式返回
queryResult.topDocs(topDocsCallable.call(), sortValueFormats);
topDocsCallable是根据不同的查询封装的。举个例子:
if (query.getClass() == MatchAllDocsQuery.class) {
collector = null;
topDocsCallable = new Callable<TopDocs>() {
@Override
public TopDocs call() throws Exception {
int count = searcher.getIndexReader().numDocs();
return new TopDocs(count, Lucene.EMPTY_SCORE_DOCS, 0);
}
};
} else if (query.getClass() == TermQuery.class && searcher.getIndexReader().hasDeletions() == false) {
final Term term = ((TermQuery) query).getTerm();
collector = null;
topDocsCallable = new Callable<TopDocs>() {
@Override
public TopDocs call() throws Exception {
int count = 0;
for (LeafReaderContext context : searcher.getIndexReader().leaves()) {
count += context.reader().docFreq(term);
}
return new TopDocs(count, Lucene.EMPTY_SCORE_DOCS, 0);
}
};
}
2、fetch阶段(+merge阶段):
执行的是FetchSearchPhase的dorun方法。
1)首先reduce
final SearchPhaseController.ReducedQueryPhase reducedQueryPhase = resultConsumer.reduce();
resultConsumer 是在构造SearchQueryThenFetchAsyncAction的时候创建的,执行的是SearchPhaseController的reducedQueryPhase方法。
searchPhaseController.newSearchPhaseResults(request, shardsIts.size())
2)查找reduce出的文档id,按照shardId存放
final IntArrayList[] docIdsToLoad = searchPhaseController.fillDocIdsToLoad(numShards, reducedQueryPhase.scoreDocs);
如果是scroll查询,将lastEmittedDocPerShard存入ShardFetchSearchRequest:
final ScoreDoc[] lastEmittedDocPerShard = isScrollSearch ?
searchPhaseController.getLastEmittedDocPerShard(reducedQueryPhase, numShards)
: null;
ShardFetchSearchRequest fetchSearchRequest = createFetchRequest(queryResult.queryResult().getRequestId(), i, entry,
lastEmittedDocPerShard, searchShardTarget.getOriginalIndices());
3)针对于每个shard,创建fetch请求,并执行
ShardFetchSearchRequest fetchSearchRequest = createFetchRequest(queryResult.queryResult().getRequestId(), i, entry,
lastEmittedDocPerShard, searchShardTarget.getOriginalIndices());
executeFetch(i, searchShardTarget, counter, fetchSearchRequest, queryResult.queryResult(),
connection);
本地节点收到请求后执行的是SearchService的executeFetchPhase方法。这主要涉及些lucene的东西,不在详细解析。
4)当从所有的shard完获取完结果之后执行:
final Runnable finishPhase = ()
-> moveToNextPhase(searchPhaseController, scrollId, reducedQueryPhase, queryAndFetchOptimization ?
queryResults : fetchResults);
moveToNextPhase中开始执行merge:
final InternalSearchResponse internalResponse = searchPhaseController.merge(context.getRequest().scroll() != null,
reducedQueryPhase, fetchResultsArr.asList(), fetchResultsArr::get);
merge结束后,通过nextPhaseFactory将结果发送出去:
(response, scrollId) -> new ExpandSearchPhase(context, response,
(finalResponse) -> sendResponsePhase(finalResponse, scrollId, context))
private static SearchPhase sendResponsePhase(InternalSearchResponse response, String scrollId, SearchPhaseContext context) {
return new SearchPhase("response") {
@Override
public void run() throws IOException {
context.onResponse(context.buildSearchResponse(response, scrollId));
}
};
}
context则是SearchQueryThenFetchAsyncAction的父类AbstractSearchAsyncAction,调用buildSearchResponse方法构造response,并回调listener。
public final void onResponse(SearchResponse response) {
listener.onResponse(response);
}
scroll查询
scroll查询原理
在第一次查询时,记录上一次查询的位置,在接下来的查询中获取到上次查询的位置,接着查询。
比如说将查询order by time offset 0 limit 100,改写成order by time where time>0 limit 100,记录最后一个$time_max,接下来的查询order by time offset 100 limit 100,改写成order by time where time>$time_max limit 100。如此往复,可以看出scroll是一个常量查询延迟和开销。
这个从源码中也可以看出:
if (returnsDocsInOrder(query, searchContext.sort())) {
if (scrollContext.totalHits == -1) {
// first round
assert scrollContext.lastEmittedDoc == null;
// there is not much that we can optimize here since we want to collect all
// documents in order to get the total number of hits
} else {
// now this gets interesting: since we sort in index-order, we can directly
// skip to the desired doc and stop collecting after ${size} matches
if (scrollContext.lastEmittedDoc != null) {
if (scrollContext.lastEmittedDoc != null) {
BooleanQuery bq = new BooleanQuery.Builder()
.add(query, BooleanClause.Occur.MUST)
.add(new MinDocQuery(after.doc + 1), BooleanClause.Occur.FILTER)
.build();
query = bq;
}
searchContext.terminateAfter(numDocs);
}
}
当scrollContext.lastEmittedDoc不为空也就是查询scroll的下一页时,将查询变为一个带偏移量的bool查询。
在本地查出数据后,更新scrollContext的值:
if (scrollContext != null) {
if (scrollContext.totalHits == -1) {
// first round
scrollContext.totalHits = topDocs.totalHits;
scrollContext.maxScore = topDocs.getMaxScore();
} else {
// subsequent round: the total number of hits and
// the maximum score were computed on the first round
topDocs.totalHits = scrollContext.totalHits;
topDocs.setMaxScore(scrollContext.maxScore);
}
if (searchContext.request().numberOfShards() == 1) {
// if we fetch the document in the same roundtrip, we already know the last emitted doc
if (topDocs.scoreDocs.length > 0) {
// set the last emitted doc
scrollContext.lastEmittedDoc = topDocs.scoreDocs[topDocs.scoreDocs.length - 1];
}
}
}
我们看到上述只更新了scrollContext的totalHits和maxScore,而lastEmittedDoc则是在fetch阶段中更新的:
先将lastEmittedDocPerShard存入ShardFetchSearchRequest:
final ScoreDoc[] lastEmittedDocPerShard = isScrollSearch ?
searchPhaseController.getLastEmittedDocPerShard(reducedQueryPhase, numShards)
: null;
ShardFetchSearchRequest fetchSearchRequest = createFetchRequest(queryResult.queryResult().getRequestId(), i, entry,
lastEmittedDocPerShard, searchShardTarget.getOriginalIndices());
然后每个节点在接收到fetch信息后,执行SearchService的executeFetchPhase方法:
if (request.lastEmittedDoc() != null) {
context.scrollContext().lastEmittedDoc = request.lastEmittedDoc();
}
当使用scroll请求时,scrollID是不变的,从SearchScrollAsyncAction代码中可以看出:
protected final void sendResponse(SearchPhaseController.ReducedQueryPhase queryPhase,
final AtomicArray<? extends SearchPhaseResult> fetchResults) {
try {
final InternalSearchResponse internalResponse = searchPhaseController.merge(true, queryPhase, fetchResults.asList(),
fetchResults::get);
// the scroll ID never changes we always return the same ID. This ID contains all the shards and their context ids
// such that we can talk to them abgain in the next roundtrip.
String scrollId = null;
if (request.scroll() != null) {
scrollId = request.scrollId();
}
listener.onResponse(new SearchResponse(internalResponse, scrollId, this.scrollId.getContext().length, successfulOps.get(),
buildTookInMillis(), buildShardFailures()));
} catch (Exception e) {
listener.onFailure(new ReduceSearchPhaseException("fetch", "inner finish failed", e, buildShardFailures()));
}
}