图像处理

2017-09-12  本文已影响163人  rogerwu1228

这篇文章总结比较全面:
http://blog.csdn.net/timidsmile/article/details/6640600

a)高斯噪声
在空间域和频域中,由于高斯噪声在数学上的易处理性,这种噪声(也称为正态噪声)模型经常被用在实践中,事实上,这种易处理性非常方便,使高斯模型经常适用于临街情况下。
b)瑞利噪声
需注意,距原点的位移和其密度图形的基本形状向右变形的事实。瑞利密度对于近似偏移的直方图十分适用。
c)伽马(爱尔兰)噪声
d)指数分布噪声
e)均匀分布噪声
f)脉冲噪声(椒盐噪声)
双极脉冲噪声也称为椒盐噪声,同时,它们有时也称为散粒和尖峰噪声。
上述的几种PDF为在实践中模型化宽带噪声干扰状态提供了有用的工具。例如,在一副图像中,高斯噪声的产生源于电子电路噪声和有低照明度或高温带来的传感器噪声。瑞利密度分布在图像范围内特征化噪声现象时非常有用。指数密度分布和伽马密度分布在激光成像中有一些应用。脉冲噪声主要表现在成像中的短暂停留中,例如错误的开关操作。均匀密度分布可能是在实践中描述的最少,然而,均匀密度座位模拟随机数产生器的基础是非常有用的。

参考博客:
http://blog.csdn.net/zhoufan900428/article/details/37695357

利用卷积可以实现对图像模糊处理、平滑处理,边缘检测,产生轧花效果的图像。
创建模板:


Snip20170920_3.png

傅立叶变换在这里的物理意义就是将光的空间分布转换为频率分布(相空间),在靠近原点的部分为图像低频部分,远离原点部分为图像高频部分。

摄像机标定(Camera calibration)简单来说是从世界坐标系换到图像坐标系的过程,也就是求最终的投影矩阵的过程。
http://www.cnblogs.com/Jessica-jie/p/6596450.html

Snip20180816_3.png
Snip20180816_4.png
上一篇 下一篇

猜你喜欢

热点阅读