2018-09-16
2018-09-16 本文已影响0人
表达_
文章名:Supervised Deep Feature Extraction for Hyperspectral Image Classification
- 期刊名: IEEE Transactions on Geoscience & Remote Sensing
- 摘要:提出了一种基于siamese网络(S-CNN)的改进监督深度特征提取方法。首先,利用5层cnn对高光谱数据提取深层特征(cnn被当做一种非线性转换函数);接着,训练由两个cnn组成的siamese网络学习类内之间的低易变性以及类间的高易变性。特别地,S-CNN的训练loss是margin ranking loss function(能够提取区分性更强(more discriminative)的分类特征)。最终在三个数据集上提取特征输入到SVM中,实现比传统方法更好的分类效果。
-
网络结构
bing5-2769673-small.gif -
S-CNN的loss
CodeCogsEqn.gif
CodeCogsEqn.gif
p1和 p2是输入图像对,f(p1)和f(p2)是CNN提取的特征,D()代表欧氏距离。 - 相关工作
1 .J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using a ‘Siamese’ time delay neural network,” in Proc. Adv. Neural Inf. Process. Syst., 1994, pp. 737–744.
2 X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg, “MatchNet: Unifying feature and metric learning for patch-based matching,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 3279–3286.
3 A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox, “Discriminative unsupervised feature learning with convolutional neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 766–774.
参考文献:
Liu B, Yu X, Zhang P, et al. Supervised Deep Feature Extraction for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2018, 56(4):1909-1921.