Lock和synchronized比较详解
为什么有了synchronized还要Lock
synchronized
是java中的一个关键字,也就是说是Java语言内置的特性。那么为什么会出现Lock
呢?
我们了解到如果一个代码块被synchronized
修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:
- 1.获取锁的线程执行完了该代码块,然后线程释放对锁的占有;
- 2.线程执行发生异常,此时JVM会让线程自动释放锁。
那么如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,试想一下,这多么影响程序执行效率。
因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。
再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。
但是采用synchronized
关键字来实现同步的话,就会导致一个问题:
如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock
就可以办到。
区别总结
synchronized使用起来更方便,Lock提供了比synchronized更多的功能,并发情况少的时候synchronized并发多时用Lock。但是要注意以下几点:
- 1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;
- 2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。
synchronized
synchronized四种锁状态的升级
synchronized用的锁存在Java对象头里,Java对象头里的Mark Word默认存储对象的HashCode、分代年龄和锁标记位。在运行期间,Mark Word里存储的数据会随着锁标志位的变化而变化。32位JVM的Mark Word可能变化存储为以下5种数据:
锁状态 | 25bit | 4bit | 1bit | 2bit |
---|---|---|---|---|
无锁 | 对象HashCode | 对象分代年龄 | 0 | 01 |
偏向锁 | 线程ID+EPoch | 对象分代年龄 | 1 | 01 |
轻量级锁 | 指向栈中锁记录的指针 | ← | ← | 00 |
23bit+2bit | 是否是偏向锁 | 锁标志位 | ||
重量级锁 | 指向互斥量(重量级锁)的指针 | ← | ← | 10 |
GC标记 | 空 | 空 | 空 | 11 |

锁的概念解释
无锁
无锁是指没有对资源进行锁定,所有的线程都能访问并修改同一个资源,但同时只有一个线程能修改成功。
无锁的特点是修改操作会在循环内进行,线程会不断的尝试修改共享资源。如果没有冲突就修改成功并退出,否则就会继续循环尝试。如果有多个线程修改同一个值,必定会有一个线程能修改成功,而其他修改失败的线程会不断重试直到修改成功。
偏向锁
偏向锁是指当一段同步代码一直被同一个线程所访问时,即不存在多个线程的竞争时,那么该线程在后续访问时便会自动获得锁,从而降低获取锁带来的消耗,即提高性能。
当一个线程访问同步代码块并获取锁时,会在 Mark Word 里存储锁偏向的线程 ID。在线程进入和退出同步块时不再通过 CAS 操作来加锁和解锁,而是检测 Mark Word 里是否存储着指向当前线程的偏向锁。轻量级锁的获取及释放依赖多次 CAS 原子指令,而偏向锁只需要在置换 ThreadID 的时候依赖一次 CAS 原子指令即可。
偏向锁只有遇到其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁,线程是不会主动释放偏向锁的。
关于偏向锁的撤销,需要等待全局安全点,即在某个时间点上没有字节码正在执行时,它会先暂停拥有偏向锁的线程,然后判断锁对象是否处于被锁定状态。如果线程不处于活动状态,则将对象头设置成无锁状态,并撤销偏向锁,恢复到无锁(标志位为01)或轻量级锁(标志位为00)的状态。
偏向锁在 JDK 6 及之后版本的 JVM 里是默认启用的。可以通过 JVM 参数关闭偏向锁:-XX:-UseBiasedLocking=false,关闭之后程序默认会进入轻量级锁状态。
轻量级锁
轻量级锁是通过用 CAS(Compare and Swap,即比较再交换) 操作和自旋来解决加锁问题,避免线程阻塞和唤醒而影响性能。
轻量级锁是指当锁是偏向锁的时候,却被另外的线程所访问,此时偏向锁就会升级为轻量级锁,其他线程会通过自旋(关于自旋的介绍见文末)的形式尝试获取锁,线程不会阻塞,从而提高性能。
轻量级锁的获取主要由两种情况:① 当关闭偏向锁功能时;② 由于多个线程竞争偏向锁导致偏向锁升级为轻量级锁。
在代码进入同步块的时候,如果同步对象锁状态为无锁状态,虚拟机将首先在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的 Mark Word 的拷贝,然后将对象头中的 Mark Word 复制到锁记录中。
拷贝成功后,虚拟机将使用 CAS 操作尝试将对象的 Mark Word 更新为指向 Lock Record 的指针,并将 Lock Record 里的 owner 指针指向对象的 Mark Word。
如果这个更新动作成功了,那么这个线程就拥有了该对象的锁,并且对象 Mark Word 的锁标志位设置为“00”,表示此对象处于轻量级锁定状态。
如果轻量级锁的更新操作失败了,虚拟机首先会检查对象的 Mark Word 是否指向当前线程的栈帧,如果是就说明当前线程已经拥有了这个对象的锁,那就可以直接进入同步块继续执行,否则说明多个线程竞争锁。
若当前只有一个等待线程,则该线程将通过自旋进行等待。但是当自旋超过一定的次数时,轻量级锁便会升级为重量级锁(锁膨胀)。
另外,当一个线程已持有锁,另一个线程在自旋,而此时又有第三个线程来访时,轻量级锁也会升级为重量级锁(锁膨胀)。
重量级锁
重量级锁是指当有一个线程获取锁之后,其余所有等待获取该锁的线程都会处于阻塞状态。
重量级锁通过对象内部的监视器(monitor)实现,而其中 monitor 的本质是依赖于底层操作系统的 Mutex Lock 实现,操作系统实现线程之间的切换需要从用户态切换到内核态,切换成本非常高。
简言之,就是所有的控制权都交给了操作系统,由操作系统来负责线程间的调度和线程的状态变更。而这样会出现频繁地对线程运行状态的切换,线程的挂起和唤醒,从而消耗大量的系统资源,导致性能低下。
Lock
下面我们就来探讨一下java.util.concurrent.locks
包中常用的类和接口。
1.Lock
通过查看Lock的源码可知,Lock是一个接口:
public interface Lock {
//获取锁。如果锁已被其他线程获取,则进行等待。
void lock();
//当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就使说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。
由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出InterruptedException。
void lockInterruptibly() throws InterruptedException;
//tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。
boolean tryLock();
//同上,只是多传个时间及时间单位
boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
void unlock();
Condition newCondition();
}
lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。
2.ReentrantLock
ReentrantLock,意思是“可重入锁”,关于可重入锁的概念在下一节讲述。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock类中定义了很多方法,比如:
- isFair() //判断锁是否是公平锁
- isLocked() //判断锁是否被任何线程获取了
- isHeldByCurrentThread() //判断锁是否被当前线程获取了
- hasQueuedThreads() //判断是否有线程在等待该锁
什么是可重入锁
如果锁具备可重入性,则称作为可重入锁。像synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。
3.ReadWriteLock
ReadWriteLock也是一个接口,在它里面只定义了两个方法:
public interface ReadWriteLock {
/**
* Returns the lock used for reading.
*
* @return the lock used for reading.
*/
Lock readLock();
/**
* Returns the lock used for writing.
*
* @return the lock used for writing.
*/
Lock writeLock();
}
一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的ReentrantReadWriteLock实现了ReadWriteLock接口。
4.ReentrantReadWriteLock
ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。
-
申请读锁的线程可以同时运行
-
如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。
-
如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。