727. Minimum Window Subsequence
2018-01-12 本文已影响0人
Jeanz
Given strings S and T, find the minimum (contiguous) substring W of S, so that T is a subsequence of W.
If there is no such window in S that covers all characters in T, return the empty string "". If there are multiple such minimum-length windows, return the one with the left-most starting index.
Example 1:
Input:
S = "abcdebdde", T = "bde"
Output: "bcde"
Explanation:
"bcde" is the answer because it occurs before "bdde" which has the same length.
"deb" is not a smaller window because the elements of T in the window must occur in order.
Note:
- All the strings in the input will only contain lowercase letters.
- The length of S will be in the range [1, 20000].
- The length of T will be in the range [1, 100].
一刷
题解:
找到S中的substring, T中的字符保持它们的order, 也在substring中出现。
对substring的限制条件是:最短的,如果有几个长度相同的,取第一个。
用dynamic programing来做,dp[i][j]表示T[0, j]是S[0,i]的subsequence
, 所以我们的目标函数就是min(i-dp[i][n-1]) for all i < m
class Solution {
public String minWindow(String S, String T) {
int m = T.length(), n = S.length();
int[][] dp = new int[m + 1][n + 1];
for (int j = 0; j <= n; j++) {
dp[0][j] = j + 1;
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (T.charAt(i - 1) == S.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = dp[i][j - 1];
}
}
}
int start = 0, len = n + 1;
for (int j = 1; j <= n; j++) {
if (dp[m][j] != 0) {
if (j - dp[m][j] + 1 < len) {
start = dp[m][j] - 1;
len = j - dp[m][j] + 1;
}
}
}
return len == n + 1 ? "" : S.substring(start, start + len);
}
}