python入门大数据 爬虫Python AI SqlPython 爬虫 web 数据分析 机器学习 人工智能

【珍藏版】长文详解python正则表达式

2018-05-21  本文已影响16人  Python资料

一、

​正则函数

二、re模块调用

三、贪婪模式

四、分组

五、正则表达式修饰符

六、正则表达式模式

七、常见的正则表达式

导读

想要使用python的正则表达式功能就需要调用re模块,re模块为高级字符串处理提供了正则表达式工具。模块中提供了不少有用的函数,比如:compile函数、match函数、search函数、findall函数、finditer函数、split函数、sub函数、subn函数等。接下来本文将会介绍这些函数的使用情况,然后通过分析编译流程对比两种re模块的调用方式,之后会介绍其他一些应用正则表达式需要知道的理论知识,最后通过一些经典的实例将之前学习的理论应用于实际。让我们开始正则表达式的学习之旅吧~~~想要一起学习Python的可以加企鹅裙二二七四三五四五零,裙内有各种资料满足大家,欢迎加裙

注:例子中如果涉及部分还未讲解的知识,若例子未看懂,可以将下面内容都看完后再回过头来看。

一、正则函数

1. re.match函数

功能:re.match尝试从字符串的起始位置匹配一个模式,如果匹配成功则返回一个匹配的对象,如果不是起始位置匹配成功的话,match()就返回none。

语法:re.match(pattern,string,flags=0)

例子:

2. re.search函数

功能:re.search 扫描整个字符串并返回第一个成功的匹配,如果匹配成功re.search方法返回一个匹配的对象,否则返回None。

语法:re.search(pattern, string, flags=0)

例子:

3. re.sub函数

功能:re.sub用于替换字符串中的匹配项。

语法:re.sub(pattern, repl, string, count=0, flags=0)

repl参数可以为替换的字符串,也可以为一个函数。

如果repl是字符串,那么就会去替换字符串匹配的子串,返回替换后的字符串;

如果repl是函数,定义的函数只能有一个参数(匹配的对象),并返回替换后的字符串。

例子:

count可指定替换次数,不指定时全部替换。例如:

repl可以为一个函数。例如:

4. re.subn函数

功能:和sub函数差不多,但是返回结果不同,返回一个元组“(新字符串,替换次数)”

例子:

5. re.compile函数

功能:compile 函数用于编译正则表达式,生成一个正则表达式( Pattern )对象,供 match() 和 search() 这两个函数使用。如果匹配成功则返回一个Match对象。

语法:re.compile(pattern[, flags])

注:compilte函数调用情况比较复杂,下面会有一节专门讲解。

6. findall函数

功能:在字符串中找到正则表达式所匹配的所有子串,并返回一个列表,如果没有找到匹配的,则返回空列表。

语法:findall(string[, pos[, endpos]])

例子:

7. re.finditer函数

功能:在字符串中找到正则表达式所匹配的所有子串,并把它们作为一个迭代器返回。

语法:re.finditer(pattern, string, flags=0)

例子:

8. re.split函数

功能:split 方法用pattern做分隔符切分字符串,分割后返回列表。如果用'(pattern)',那么分隔符也会返回。

语法:re.split(pattern, string[, maxsplit=0, flags=0])

例子:

小结

1. 函数辨析:match和search的区别

re.match只匹配字符串的开始,如果字符串开始不符合正则表达式,则匹配失败,函数返回None;

re.search匹配整个字符串,直到找到一个匹配。

2. 函数辨析:3个匹配函数match、search、findall

match 和 search 只匹配一次 ,匹配不到返回None,findall 查找所有匹配结果。

3. 函数返回值

函数re.finditer 、 re.match和re.search 返回匹配对象,而findall、split返回列表

4. re.compile函数是个谜。

二、re模块调用

re模块的使用一般有两种方式:

方法1:

直接使用上面介绍的 re.match, re.search 和 re.findall 等函数对文本进行匹配查找。

方法2:

(1)使用compile 函数将正则表达式的字符串形式编译为一个 Pattern 对象;

(2)通过 Pattern 对象提供的一系列方法对文本进行匹配查找,获得匹配结果(一个 Match 对象);

(3)最后使用 Match 对象提供的属性和方法获得信息,根据需要进行其他的操作。

 接下来重点介绍一下compile函数。

re.compile函数用于编译正则表达式,生成一个Pattern对象,调用形式如下:

re.compile(pattern[, flag])

其中,pattern是一个字符串形式的正则表达式,flag是一个可选参数(下一节具体讲解)。

例子:

1. match函数

 使用语法:

(1)re.match(pattern, string[, flags])

这个之前讲解过了。

(2)Pattern对象:match(string[, pos[, endpos]])

其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。因此,当不指定 pos 和 endpos 时,match 方法默认匹配字符串的头部。当匹配成功时,返回一个 Match 对象,如果没有匹配上,则返回 None。

例子:

当匹配成功时会返回一个Match对象,其中:

group([0, 1, 2,...]): 可返回一个或多个分组匹配的字符串,若要返回匹配的全部字符串,可以使用group()或group(0)。

start(): 匹配的开始位置。

end(): 匹配的结束位置。

span(): 包含起始、结束位置的元组。等价于(start(), end())。

groups(): 返回分组信息。等价于(m.group(1), m.group(2))。

groupdict(): 返回命名分组信息。

例子:

2. search函数

使用语法:

(1)re.search(pattern, string, flags=0)

这个函数前面已经讲解过了。

(2)Pattern对象:search(string[, pos[, endpos]])

例子:

3. findall函数

使用语法:

(1)findall(string[, pos[, endpos]])

这个函数前面已经讲解过了。

(2)Pattern对象:findall(string[, pos[, endpos]])

findall 以列表形式返回全部能匹配的子串,如果没有匹配,则返回一个空列表。

例子:

4. finditer函数

使用语法:

(1)re.finditer(pattern, string, flags=0)

这个函数前面已经讲解过了。

(2)Pattern对象:finditer(string[, pos[, endpos]])

finditer 函数与 findall类似,但是它返回每一个匹配结果(Match 对象)的迭代器

 例子:

5. split函数

使用语法:

(1)re.split(pattern, string[, maxsplit=0, flags=0])

这个函数前面已经讲解过了。

(2)Pattern对象:split(string[, maxsplit]])

maxsplit 可指定分割次数,不指定将对字符串全部分割。

例子:

6. sub函数

 使用语法:

(1)re.sub(pattern, repl, string, count=0, flags=0)

这个函数前面已经讲解过了。

(2)Pattern对象:sub(repl, string[, count])

当repl为字符串时,可以用\id的形式引用分组,但不能使用编号0;当repl为函数时,返回的字符串中不能再引用分组。

7. subn函数

subn和sub类似,也用于替换操作。使用语法如下:Pattern对象:subn(repl, string[, count])

返回一个元组,元组第一个元素和sub函数的结果相同,元组第二个元素返回替换次数。

例子:

小结:

1. 使用Pattern对象的match、search、findall、finditer等函数可以指定匹配字符串的起始位置。

2. 对re模块的两种使用方式进行对比

使用 re.compile 函数生成一个 Pattern 对象,然后使用 Pattern 对象的一系列方法对文本进行匹配查找;

直接使用 re.match, re.search 和 re.findall 等函数直接对文本匹配查找。

 例子:

在上述例子中,我们发现他们共用了同一个正则表达式,表明上看好像没发现什么问题,但是当我们结合正则表达式的匹配过程进行分析时,就会发现这两种调用方式的效率是不一样的。使用正则表达式进行匹配的流程如下图所示:

所以匹配流程是先对正则表达式进行编译,然后得到一个对象,再使用该对象对需要匹配的文本进行匹配。这时我们就发现方式2会对正则表达式进行了多次编译,这样效率不就降低了嘛。

所以我们可以得到如下结论

如果一个正则表达式要用多次,那么出于效率考虑,我们可以预先编译正则表达式,然后调用的一系列函数时复用。如果直接使用re.match、re.search等函数,则需要每一次都对正则表达式进行编译,效率就会降低。因此在这种情况下推荐使用第一种方式。

三、贪恋匹配

正则表达式匹配时默认的是贪恋匹配,也就是会尽可能多的匹配更多字符。如果想使用非贪恋匹配,可以在正则表达式中加上'?'。

下面,我们来看1个实例:

四、分组

如果你想要提取子串或是想要重复提取多个字符,那么你可以选择用定义分组的形式。用()就可以表示要提取的分组(group),接下来用几个实例来理解一下分组的使用方式:

例子1:

正则表达式'(\d{4})-(\d{3, 8})$'表示匹配两个分组,第一个分组(\d{4})是一个有4个数字的子串,第二个分组(\d{3,8})表示匹配一个数字子串,子串长度为3到8之间。

例子2:

正则表达式'(\d{1,3}\.){3}\d{1,3}‘的匹配过程分为两个部分,'(\d{1,3}\.){3}'表示匹配一个长度为1到3之间的数字子串加上一个英文句号的字符串,重复匹配 3 次该字符串,'\d{1,3}'表示匹配一个1到3位的数字子串,所以最后得到结果123.456.78.90。

例子3:

(.*)第一个分组,.* 代表匹配除换行符之外的所有字符。(.*?) 第二个匹配分组,.*? 后面加了个问号,代表非贪婪模式,只匹配符合条件的最少字符。后面的一个 .* 没有括号包围,所以不是分组,匹配效果和第一个一样,但是不计入匹配结果中。

group() 等同于group(0),表示匹配到的完整文本字符;

group(1) 得到第一组匹配结果,也就是(.*)匹配到的;

group(2) 得到第二组匹配结果,也就是(.*?)匹配到的;

因为只有匹配结果中只有两组,所以如果填 3 时会报错。

五、正则表达式修饰符

正则表达式可以包含一些可选标志修饰符来控制匹配的模式。修饰符被指定为一个可选的标志。多个标志可以通过按位 OR(|) 它们来指定。

例子:

六、正则表达式模式

下面列出了正则表达式模式语法中的特殊元素。

七、常见的正则表达式

通常情况下,通过实例学习是一个高效的途径。接下来我将整理一些常见的正则表达式应用实例,大家可以试着将前面学的理论知识应用于实践啦。

(1)匹配国内13、15、18开头的手机号码的正则表达式

(2)匹配中文的正则表达式

中文的unicode编码范围主要在[\u4e00-\u9fa5],这个范围之中不包括全角(中文)标点。当我们想要把文本中的中文汉字提取出来时可以使用如下方式:

(3)匹配由数字、26个英文字母或下划线组成的字符串的正则表达式

(4)匹配金额,精确到 2 位小数

(5)提取文本中的URL链接

(6)匹配身份证号码

(7)匹配整数

上一篇下一篇

猜你喜欢

热点阅读