一文秒杀三道区间集合题目
读完本文,你不仅学会了算法套路,还可以顺便去 LeetCode 上拿下如下题目:
-----------
经常有读者问区间相关的问题,今天写一篇文章,秒杀三道区间相关的问题。
所谓区间问题,就是线段问题,让你合并所有线段、找出线段的交集等等。主要有两个技巧:
1、排序。常见的排序方法就是按照区间起点排序,或者先按照起点升序排序,若起点相同,则按照终点降序排序。当然,如果你非要按照终点排序,无非对称操作,本质都是一样的。
2、画图。就是说不要偷懒,勤动手,两个区间的相对位置到底有几种可能,不同的相对位置我们的代码应该怎么去处理。
废话不多说,下面我们来做题。
区间覆盖问题
这是力扣第 1288 题,看下题目:
image题目问我们,去除被覆盖区间之后,还剩下多少区间,那么我们可以先算一算,被覆盖区间有多少个,然后和总数相减就是剩余区间数。
对于这种区间问题,如果没啥头绪,首先排个序看看,比如我们按照区间的起点进行升序排序:
image排序之后,两个相邻区间可能有如下三种相对位置:
imagePS:我认真写了 100 多篇原创,手把手刷 200 道力扣题目,全部发布在 labuladong的算法小抄,持续更新。建议收藏,按照我的文章顺序刷题,掌握各种算法套路后投再入题海就如鱼得水了。
对于这三种情况,我们应该这样处理:
对于情况一,找到了覆盖区间。
对于情况二,两个区间可以合并,成一个大区间。
对于情况三,两个区间完全不相交。
依据几种情况,我们可以写出如下代码:
int removeCoveredIntervals(int[][] intvs) {
// 按照起点升序排列,起点相同时降序排列
Arrays.sort(intvs, (a, b) -> {
if (a[0] == b[0]) {
return b[1] - a[1];
}
return a[0] - b[0];
});
// 记录合并区间的起点和终点
int left = intvs[0][0];
int right = intvs[0][1];
int res = 0;
for (int i = 1; i < intvs.length; i++) {
int[] intv = intvs[i];
// 情况一,找到覆盖区间
if (left <= intv[0] && right >= intv[1]) {
res++;
}
// 情况二,找到相交区间,合并
if (right >= intv[0] && right <= intv[1]) {
right = intv[1];
}
// 情况三,完全不相交,更新起点和终点
if (right < intv[0]) {
left = intv[0];
right = intv[1];
}
}
return intvs.length - res;
}
以上就是本题的解法代码,起点升序排列,终点降序排列的目的是防止如下情况:
image对于这两个起点相同的区间,我们需要保证长的那个区间在上面(按照终点降序),这样才会被判定为覆盖,否则会被错误地判定为相交,少算一个覆盖区间。
区间合并问题
力扣第 56 题就是一道相关问题,题目很好理解:
title我们解决区间问题的一般思路是先排序,然后观察规律。
一个区间可以表示为 [start, end]
,前文聊的区间调度问题,需要按 end
排序,以便满足贪心选择性质。而对于区间合并问题,其实按 end
和 start
排序都可以,不过为了清晰起见,我们选择按 start
排序。
显然,对于几个相交区间合并后的结果区间 x
,x.start
一定是这些相交区间中 start
最小的,x.end
一定是这些相交区间中 end
最大的。
由于已经排了序,x.start
很好确定,求 x.end
也很容易,可以类比在数组中找最大值的过程:
int max_ele = arr[0];
for (int i = 1; i < arr.length; i++)
max_ele = max(max_ele, arr[i]);
return max_ele;
然后就可以写出完整代码
# intervals 形如 [[1,3],[2,6]...]
def merge(intervals):
if not intervals: return []
# 按区间的 start 升序排列
intervals.sort(key=lambda intv: intv[0])
res = []
res.append(intervals[0])
for i in range(1, len(intervals)):
curr = intervals[i]
# res 中最后一个元素的引用
last = res[-1]
if curr[0] <= last[1]:
# 找到最大的 end
last[1] = max(last[1], curr[1])
else:
# 处理下一个待合并区间
res.append(curr)
return res
image
区间交集问题
先看下题目,力扣第 986 题就是这个问题:
title题目很好理解,就是让你找交集,注意区间都是闭区间。
PS:我认真写了 100 多篇原创,手把手刷 200 道力扣题目,全部发布在 labuladong的算法小抄,持续更新。建议收藏,按照我的文章顺序刷题,掌握各种算法套路后投再入题海就如鱼得水了。
解决区间问题的思路一般是先排序,以便操作,不过题目说已经排好序了,那么可以用两个索引指针在 A
和 B
中游走,把交集找出来,代码大概是这样的:
# A, B 形如 [[0,2],[5,10]...]
def intervalIntersection(A, B):
i, j = 0, 0
res = []
while i < len(A) and j < len(B):
# ...
j += 1
i += 1
return res
不难,我们先老老实实分析一下各种情况。
首先,对于两个区间,我们用 [a1,a2]
和 [b1,b2]
表示在 A
和 B
中的两个区间,那么什么情况下这两个区间没有交集呢:
只有这两种情况,写成代码的条件判断就是这样:
if b2 < a1 or a2 < b1:
[a1,a2] 和 [b1,b2] 无交集
那么,什么情况下,两个区间存在交集呢?根据命题的否定,上面逻辑的否命题就是存在交集的条件:
# 不等号取反,or 也要变成 and
if b2 >= a1 and a2 >= b1:
[a1,a2] 和 [b1,b2] 存在交集
接下来,两个区间存在交集的情况有哪些呢?穷举出来:
image这很简单吧,就这四种情况而已。那么接下来思考,这几种情况下,交集是否有什么共同点呢?
image我们惊奇地发现,交集区间是有规律的!如果交集区间是 [c1,c2]
,那么 c1=max(a1,b1)
,c2=min(a2,b2)
!这一点就是寻找交集的核心,我们把代码更进一步:
while i < len(A) and j < len(B):
a1, a2 = A[i][0], A[i][1]
b1, b2 = B[j][0], B[j][1]
if b2 >= a1 and a2 >= b1:
res.append([max(a1, b1), min(a2, b2)])
# ...
最后一步,我们的指针 i
和 j
肯定要前进(递增)的,什么时候应该前进呢?
结合动画示例就很好理解了,是否前进,只取决于 a2
和 b2
的大小关系:
while i < len(A) and j < len(B):
# ...
if b2 < a2:
j += 1
else:
i += 1
以此思路写出代码:
# A, B 形如 [[0,2],[5,10]...]
def intervalIntersection(A, B):
i, j = 0, 0 # 双指针
res = []
while i < len(A) and j < len(B):
a1, a2 = A[i][0], A[i][1]
b1, b2 = B[j][0], B[j][1]
# 两个区间存在交集
if b2 >= a1 and a2 >= b1:
# 计算出交集,加入 res
res.append([max(a1, b1), min(a2, b2)])
# 指针前进
if b2 < a2: j += 1
else: i += 1
return res
总结一下,区间类问题看起来都比较复杂,情况很多难以处理,但实际上通过观察各种不同情况之间的共性可以发现规律,用简洁的代码就能处理。
相关推荐:
_____________
我的 在线电子书 有 100 篇原创文章,手把手带刷 200 道力扣题目,建议收藏!对应的 GitHub 算法仓库 已经获得了 70k star,欢迎标星!