功能性AI术语表

2017-11-26  本文已影响0人  williamstocks

功能性AI术语表:

算法:一套计算机要遵循的指令。一个算法可以是一个简单的单步程序也可以是一个复杂的神经网络,但是通常被用来指一个模型。

人工智能:这是一个统称。广义上说,软件意味着模仿或取代人类智能的各个方面。人工智能软件可以从图像或文本、经验、进化或其他研究人员的发明等数据中学习。

计算机视觉:人工智能研究探索图像和视频识别和理解的领域。这个领域从了解苹果的外观,到苹果的功能用途,以及与之相关的理念。它是被用作自动驾驶汽车、谷歌图像搜索以及Facebook上自动贴标签的主要技术。

深度学习:一个神经网络被分层来理解数据中的复杂模式和关系的领域。当一个神经网络的输出成为另一个神经网络的输入时,有效地将它们叠加起来,由此产生的神经网络就是“深度”了。

普通智力:有时被称为“强人工智能”,一般智能将能够在不同的任务中学习和应用不同的想法。

生成式对抗网络:这是一个包含两个神经网络的系统,一个是用来生成输出的,另一个是用来检验这个输出的质量是否是想要的输出的神经网络。例如,当试图生成一个苹果的图片时,生成器将生成一个图像,而另一个(称为鉴别器)如果不能识别图像中的一个苹果,会使生成器再次尝试生成。

机器学习:机器学习(ML)常常与术语人工智能结合在一起,是使用算法从数据中学习的惯例。

模型:模型是一种机器学习算法,它可以建立自己对某一主题的理解,或者它自己的世界模型。

自然语言处理:用于理解语言中思想的意图和关系的软件。

神经网络:通过连接起来的数学方程式的网络,模拟大脑处理信息的方式以建立起来的算法。提供给神经网络的数据被分解成更小的块并根据网络的复杂性分析其基础模式成千上万次。当一个神经网络的输出被输入到另一个神经网络的输入时,这两个神经网络就会链接到一起成为分层,成为一个深层的神经网络。通常,深度神经网络的层会分析越来越高的抽象层的数据,这意味着,在得到最简单和最准确的数据表示之前,它们会将有用数据从没有必要的数据中提取出来。

卷积神经网络:一个主要用来识别和理解图像、视频和音频数据的神经网络,因为它能够处理密集的数据,比如数百万像素的图像或数千个音频文件样本。

递归神经网络:一种用于自然语言处理的神经网络,它可以周期性地、连续地分析数据,这意味着它可以处理像单词或句子这样的数据,同时在句子中保持它们的顺序和上下文。

长短期记忆网络:一种周期性的神经网络的变体,它的是用来根据数据来保留结构化的信息。例如,RNN可以识别句子中的所有名词和形容词,检查它们是否被正确使用,但LSTM可以记住一本书的情节。

强化学习:一种能够从经验中学习的深度学习算法。是可以控制环境的某些方面的算法,比如视频游戏的角色,然后通过反复试验和错误来学习。由于它们是高度可重复的,作为三维世界的模型,并且已经在电脑上玩了,许多强化学习的突破都来自于玩视频游戏的算法。在DeepMind的AlphaGo中,RL是机器学习的主要类型之一,它在围棋中击败了世界冠军Lee Sedol。在现实世界中,在网络安全等领域已经证明了这一点,软件学会了欺骗反病毒软件,使其认为恶意文件是安全的。

超级智能:比人脑还要更强大的人工智能。很难定义它因为我们仍然无法客观地衡量人类的大脑能做什么。

监督式学习:在被训练的过程中,给其提供的数据是已经组织好的、已经被贴好标签的机器学习。如果你正在建立一种监督式的学习算法来识别猫,你就可以在1000张猫的图片上训练这个算法。

训练:通过提供数据来让算法学习的过程。

无监督学习:机器学习算法的一种,没有给出任何关于它应该如何对数据进行分类的信息,并且必须找到它们之间的关系的算法。像Facebook LeCun这样的人工智能研究人员将无人监督的学习视为人工智能研究的圣杯,因为它与人类自然学习的方式非常相似。“在无人监督的学习中,大脑比我们的模型好得多”,LeCun告诉IEEE光谱,“这就意味着我们的人工学习系统缺少了一些非常基本的生物学习原理”。

上一篇下一篇

猜你喜欢

热点阅读