豆瓣电影Top250 爬虫
2017-03-02 本文已影响304人
木一晟
爬取豆瓣电影top250。
1. 单线程版
# -*- coding: utf-8 -*-
import requests
import re
from threading import Thread
from bs4 import BeautifulSoup as bs
def fetch(url):
s = requests.Session()
s.headers.update({"user-agent": user_agent})
return s.get(url)
def title_get(url):
try:
result = fetch(url)
except requests.exceptions.RequestException:
return False
html = bs(result.text, 'lxml')
title_list = html.select('div.pic > a > img')
'''
title_list中的元素格式如下 e.g:
<img alt="这个杀手不太冷" class="" src="https://img3.doubanio.com
/view/movie_poster_cover/ipst/public/p511118051.jpg"/
'''
try:
title = [re.findall(r'alt="(.*?)"', str(title))[0] for title in title_list]
except IndexError:
pass
return title
def not_use_thread():
for page in range(0, 250, 25):
url = 'https://movie.douban.com/top250?start={}&filter='.format(page)
title_get(url)
if __name__ == '__main__':
user_agent = 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 \
(KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36'
%time not_use_thread() # 我使用的Ipython %time是其自带的模块 下面是其输出!
Out: CPU times: user 1.11 s, sys: 8 ms, total: 1.12 s
Wall time: 3.58 s
2. 多线程版
# -*- coding: utf-8 -*-
import requests
import re
from threading import Thread
from bs4 import BeautifulSoup as bs
def fetch(url):
s = requests.Session()
s.headers.update({"user-agent": user_agent})
return s.get(url)
def title_get(url):
try:
result = fetch(url)
except requests.exceptions.RequestException:
return False
html = bs(result.text, 'lxml')
title_list = html.select('div.pic > a > img')
try:
title = [re.findall(r'alt="(.*?)"', str(title))[0] for title in title_list]
except IndexError:
pass
return title
def use_thread():
threads = []
for page in range(0, 250, 25):
url = 'https://movie.douban.com/top250?start={}&filter='.format(page)
t = Thread(target=title_get, args=(url, ))
t.setDaemon(True)
threads.append(t)
t.start()
for t in threads:
t.join()
if __name__ == '__main__':
user_agent = 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 \
(KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36'
%time use_thread()
Out: CPU times: user 1.16 s, sys: 172 ms, total: 1.33 s
Wall time: 1.28 s
使用线程池
线程的创建和销毁是一个比较重的开销。所以,使用线程池,重用线程池中的线程!
def use_thread_pool():
url = 'https://movie.douban.com/top250?start={}&filter='
urls = [url.format(page) for page in range(0, 250, 25)]
pool = ThreadPool(7)
pool.map(title_get, urls)
pool.close()
pool.join()
Out: CPU times: user 1.23 s, sys: 152 ms, total: 1.38 s
Wall time: 1.29 s
再加上一个异步的吧
3. 异步版
此版本使用的是异步库asyncio
和对其进行深度封装的库aiohttp
。
# coding=utf-8
import re
import aiohttp
import asyncio
from bs4 import BeautifulSoup
async def get(url, headers):
res = await aiohttp.request('GET', url)
body = res.read()
return (await body)
def get_title(html, name=None):
soup = BeautifulSoup(html, 'lxml')
title_list = soup.select('div.pic > a > img')
try:
title = [re.findall(r'alt="(.*?)"', str(title))[0] for title in title_list]
except IndexError:
pass
return title
async def print_title(page):
url = 'https://movie.douban.com/top250?start={}&filter='.format(page)
with await sem:
html = await get(url, headers)
title = get_title(html)
# print('{} {}'.format(page, title))
if __name__ == '__main__':
headers = {'User-Agent':'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 \
(KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36'}
pages = list(range(0, 250, 25))
sem = asyncio.Semaphore(5) # 限制并发量
loop = asyncio.get_event_loop()
f = asyncio.wait([print_title(page) for page in pages])
%time loop.run_until_complete(f)
Out: CPU times: user 984 ms, sys: 28 ms, total: 1.01 s
Wall time: 1.67 s
总结
以上测试时间基于笔者电脑的配置和网络情况, 因人而异!
- 单线程和多线程的对比,可以看到,使用多线程后速度提升了3倍。
- 使用线程池后,在限制线程数的状态下,依然有着不错的速度!
- 使用异步虽然在这里并没有多大的优势相对于多线程来说,但是当请求量很大时,就能显示出异步的强大了。在这里就不做过多赘述了!