Deeplearning.ai Course-2 Week-2

2017-10-09  本文已影响0人  _刘某人_

前言:

文章以Andrew Ng 的 deeplearning.ai 视频课程为主线,记录Programming Assignments 的实现过程。相对于斯坦福的CS231n课程,Andrew的视频课程更加简单易懂,适合深度学习的入门者系统学习!

本次作业主要练习的是最优化cost函数的方法,不同的优化方法可以加速学习的过程,可能给最后的识别准确率带来不同的影响。对于cost函数的优化首先有一个直观的感受:

1.1 Gradient Descent:

一个简单的优化方法叫做梯度下降的方法,在每次迭代中对所有样本执行梯度下降,因此也叫做batch gradient descent

代码如下:

def update_parameters_with_gd(parameters, grads, learning_rate):

L = len(parameters) // 2

for l in range(L):

parameters["W" + str(l+1)] = parameters["W"+str(l+1)]-learning_rate*grads["dW"+str(l+1)]

parameters["b" + str(l+1)] = parameters["b"+str(l+1)]-learning_rate*grads["db"+str(l+1)]

return parameters

Stochastic Gradient Descent:针对于每一个样本,对每一个样本执行梯度下降算法

Mini-Batch Gradient descent 介于SGD和 GD,每次训练的样本数量<m且>1,这样可以吸取两种方法的优势,达到好的效果

1.2 Mini-Batch Gradient descent:

我们首先需要构建Mini-Batch 去训练模型涉及到两个过程shuffle和partition,代码如下:

def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):

np.random.seed(seed)           

m = X.shape[1]                  

mini_batches = []

permutation = list(np.random.permutation(m))

shuffled_X = X[:, permutation]

shuffled_Y = Y[:, permutation].reshape((1,m))

# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.

num_complete_minibatches = math.floor(m/mini_batch_size) 

for k in range(0, num_complete_minibatches):

mini_batch_X = shuffled_X[:,k*mini_batch_size:(k+1)*mini_batch_size]

mini_batch_Y = shuffled_Y[:,k*mini_batch_size:(k+1)*mini_batch_size]

mini_batch = (mini_batch_X, mini_batch_Y)

mini_batches.append(mini_batch)

if m % mini_batch_size != 0:

mini_batch_X = shuffled_X[:, num_complete_minibatches*mini_batch_size:m]

mini_batch_Y = shuffled_Y[:, num_complete_minibatches*mini_batch_size:m]

mini_batch = (mini_batch_X, mini_batch_Y)

mini_batches.append(mini_batch)

return mini_batches

1.3 Momentum

def initialize_velocity(parameters):

L = len(parameters) // 2 

v = {}

for l in range(L):

v["dW" + str(l+1)] = np.zeros((parameters["W"+str(l+1)].shape[0],parameters["W"+str(l+1)].shape[1]))

v["db" + str(l+1)] = np.zeros((parameters["b"+str(l+1)].shape[0],parameters["b"+str(l+1)].shape[1]))

return v

def update_parameters_with_momentum(parameters, grads, v, beta, learning_rate):

L = len(parameters) // 2 # number of layers in the neural networks

for l in range(L):

v["dW" + str(l+1)] = beta*v["dW"+str(l+1)]+(1-beta)*grads["dW"+str(l+1)]

v["db" + str(l+1)] = beta*v["db"+str(l+1)]+(1-beta)*grads["db"+str(l+1)]

parameters["W" + str(l+1)] = parameters["W"+str(l+1)]-learning_rate*v["dW"+str(l+1)]

parameters["b" + str(l+1)] = parameters["b"+str(l+1)]-learning_rate*v["db"+str(l+1)]

return parameters, v

1.4 Adam

Adam是目前为止最为广泛应用的优化方式,整合了RMSProp和Momentum的优点,计算方式如下:

def initialize_adam(parameters) :

L = len(parameters) // 2 

v = {}

s = {}

for l in range(L):

v["dW" + str(l+1)] = np.zeros((parameters["W"+str(l+1)].shape[0],parameters["W"+str(l+1)].shape[1]))

v["db" + str(l+1)] = np.zeros((parameters["b" + str(l + 1)].shape[0], parameters["b" + str(l + 1)].shape[1]))

s["dW" + str(l+1)] = np.zeros((parameters["W" + str(l + 1)].shape[0], parameters["W" + str(l + 1)].shape[1]))

s["db" + str(l+1)] = np.zeros((parameters["b" + str(l + 1)].shape[0], parameters["b" + str(l + 1)].shape[1]))

return v, s

def update_parameters_with_adam(parameters, grads, v, s, t, learning_rate = 0.01,

beta1 = 0.9, beta2 = 0.999,  epsilon = 1e-8):

L = len(parameters) // 2              

s_corrected = {}    

v_corrected = {}                 

for l in range(L):

v["dW" + str(l+1)] = beta1*v["dW"+str(l+1)]+(1-beta1)*grads["dW"+str(l+1)]

v["db" + str(l+1)] = beta1*v["db"+str(l+1)]+(1-beta1)*grads["db"+str(l+1)]

v_corrected["dW" + str(l+1)] = v["dW"+str(l+1)]/(1-beta1**t)

v_corrected["db" + str(l+1)] = v["db"+str(l+1)]/(1-beta1**t)

s["dW" + str(l+1)] = beta2*s["dW"+str(l+1)]+(1-beta2)*(grads["dW"+str(l+1)]*grads["dW"+str(l+1)])

s["db" + str(l+1)] = beta2*s["db"+str(l+1)]+(1-beta2)*(grads["db"+str(l+1)]*grads["db"+str(l+1)])

s_corrected["dW" + str(l+1)] = s["dW"+str(l+1)]/(1-beta2**t)

s_corrected["db" + str(l+1)] = s["db"+str(l+1)]/(1-beta2**t)

parameters["W" + str(l+1)] = parameters["W"+str(l+1)]-learning_rate*v_corrected["dW"+str(l+1)]/(np.sqrt(s_corrected["dW"+str(l+1)])+epsilon)

parameters["b" + str(l+1)] = parameters["b"+str(l+1)]-learning_rate*v_corrected["db"+str(l+1)]/(np.sqrt(s_corrected["db"+str(l+1)])+epsilon)

return parameters, v, s

1.5 Model 

首先看一下数据集的样子:

train_X, train_Y = load_dataset()

def model(X, Y, layers_dims, optimizer, learning_rate = 0.0007, mini_batch_size = 64, beta = 0.9,

beta1 = 0.9, beta2 = 0.999,  epsilon = 1e-8, num_epochs = 10000, print_cost = True):

L = len(layers_dims)          

costs = []                    

t = 0                          

seed = 10                       

parameters = initialize_parameters(layers_dims)

if optimizer == "gd":

pass 

elif optimizer == "momentum":

v = initialize_velocity(parameters)

elif optimizer == "adam":

v, s = initialize_adam(parameters)

# Optimization loop

for i in range(num_epochs):

seed = seed + 1

minibatches = random_mini_batches(X, Y, mini_batch_size, seed)

for minibatch in minibatches:

(minibatch_X, minibatch_Y) = minibatch

a3, caches = forward_propagation(minibatch_X, parameters)

cost = compute_cost(a3, minibatch_Y)

grads = backward_propagation(minibatch_X, minibatch_Y, caches)

if optimizer == "gd":

parameters = update_parameters_with_gd(parameters, grads, learning_rate)

elif optimizer == "momentum":

parameters, v = update_parameters_with_momentum(parameters, grads, v, beta, learning_rate)

elif optimizer == "adam":

t = t + 1 

parameters, v, s = update_parameters_with_adam(parameters, grads, v, s,

t, learning_rate, beta1, beta2,  epsilon)

if print_cost and i % 1000 == 0:

print ("Cost after epoch %i: %f" %(i, cost))

if print_cost and i % 100 == 0:

costs.append(cost)

plt.plot(costs)

plt.ylabel('cost')

plt.xlabel('epochs (per 100)')

plt.title("Learning rate = " + str(learning_rate))

plt.show()

return parameters

我们看一下 Mini-batch Gradient descent的训练效果:

layers_dims = [train_X.shape[0], 5, 2, 1]

parameters = model(train_X, train_Y, layers_dims, optimizer = "gd")

predictions = predict(train_X, train_Y, parameters)

plt.title("Model with Gradient Descent optimization")

axes = plt.gca()

axes.set_xlim([-1.5,2.5])

axes.set_ylim([-1,1.5])

plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

可以发现准确率只有将近80%

下面我们看一下momentum的训练效果:

layers_dims = [train_X.shape[0], 5, 2, 1]

parameters = model(train_X, train_Y, layers_dims, beta = 0.9, optimizer = "momentum")

predictions = predict(train_X, train_Y, parameters)

plt.title("Model with Momentum optimization")

axes = plt.gca()

axes.set_xlim([-1.5,2.5])

axes.set_ylim([-1,1.5])

plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

准确率基本上和Mini-batch Gradient Descent差不多

最后我们看一下Adam的训练效果:

layers_dims = [train_X.shape[0], 5, 2, 1]

parameters = model(train_X, train_Y, layers_dims, optimizer = "adam")

predictions = predict(train_X, train_Y, parameters)

plt.title("Model with Adam optimization")

axes = plt.gca()

axes.set_xlim([-1.5,2.5])

axes.set_ylim([-1,1.5])

plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

我们看到准确率达到94%

综上所述,我们发现Momentum通常是有效果的,但是在较小的学习率和简单的数据集上,效果不是很明显,Adam通常来说效果要由于其他两种方法,但是在更多迭代次数的情况下,通常3种优化方法都会得到一个好的结果,Adam只是收敛的更快。

最后附上我作业的得分,表示我程序没有问题,如果觉得我的文章对您有用,请随意打赏,我将持续更新Deeplearning.ai的作业!

上一篇下一篇

猜你喜欢

热点阅读