线性代数-行列式性质

2019-11-05  本文已影响0人  d0dcdf2fcfdc


D =\left|\begin{array}{ccc}a_{ij} \end{array}\right|=\left|\begin{array}{ccc}a_{11}  & a_{12}  & ··· & a_{1n} \\a_{21}  & a_{22}  & ··· & a_{2n} \\···  & ···  & ··· & ···  \\a_{n1}  & a_{n2}  & ··· & x_{nn} \end{array}\right|=\sum\nolimits_{1}^n(-1)^{    \tau(P_{1}P_{2}···P_{n}) +     \tau(P_{1}P_{2}···P_{n})}a_{P_{11}}a_{P_{22}}···a_{P_{nn}}

一、转置行列式:将D的行列互换(a_{ij} = b_{ji})得到D^T 为D的转置行列式

D = \left|\begin{array}{ccc}a_{ij} \end{array}\right|=\left|\begin{array}{ccc}\color{red} {a_{11}}  & \color{red} {a_{12}}  & ··· & \color{red} {a_{1n}} \\\color{blue} {a_{21}}  & \color{blue} {a_{22}}  & ··· & \color{blue} {a_{2n}} \\···  & ···  & ··· & ···  \\\color{green} {a_{n1}}  & \color{green} {a_{n2}}  & ··· & \color{green} {a_{nn}} \end{array}\right|D^T =\left|\begin{array}{ccc}b_{ij} \end{array}\right|=\left|\begin{array}{ccc}\color{red} {a_{11}}  & \color{blue} {a_{21}}  & ··· & \color{green} {a_{n1}} \\\color{red} {a_{12}}  & \color{blue} {a_{22}}  & ··· & \color{green} {a_{n2}} \\···  & ···  & ··· & ···  \\\color{red} {a_{1n}}  & \color{blue} {a_{2n}}  & ··· & \color{green} {a_{nn}} \end{array}\right|


性质一、行列式与它的转置行列式相等,因此行列具有相同的性质,对行成立的性质对列同样成立,反之亦然

推导:

D =\left|\begin{array}{ccc}a_{ij} \end{array}\right|=\sum\nolimits_{1}^n(-1)^{    \tau(P_{1}P_{2}···P_{n})}a_{1P_{1}}a_{2P_{2}}···a_{nP_{n}} (行列式的行顺序定义)

D^T =\left|\begin{array}{ccc}b_{ij} \end{array}\right|=\sum\nolimits_{1}^n(-1)^{    \tau(P_{1}P_{2}···P_{n})}b_{P_{1}1}b_{P_{2}2}···b_{P_{n}n} (行列式的列顺序定义)

a_{ij} = b_{ji}\Rightarrow D=D^T


性质二、互换行列式的两行(或两列),行列式变号

推导:

D = \left|\begin{array}{ccc}a_{ij} \end{array}\right| =\left|\begin{array}{ccc}\color{} {a_{11}}  & \color{} {a_{12}}  & ··· & \color{} {a_{1n}} \\···  & ···  & ··· & ···  \\\color{red} {a_{x1}}  & \color{red} {a_{x2}}  & ··· & \color{red} {a_{xn}} \\···  & ···  & ··· & ···  \\\color{blue} {a_{y1}}  & \color{blue} {a_{y2}}  & ··· & \color{blue} {a_{yn}} \\···  & ···  & ··· & ···  \\a_{n1}  & a_{n2}  & ··· & a_{nn} \\\end{array}\right|=\sum\nolimits_{1}^n(-1)^{    \tau(P_{1}P_{2}···\color{red}{P_{x}}···\color{blue}{P_{y}}···P_{n})}a_{1P_{1}}a_{2P_{2}}···\color{red}{a_{xP_{x}}}···\color{blue}{a_{yP_{y}}}···a_{nP_{n}}

D_{2}  = \left|\begin{array}{ccc}a_{ij} \end{array}\right| =\left|\begin{array}{ccc}\color{} {a_{11}}  & \color{} {a_{12}}  & ··· & \color{} {a_{1n}} \\···  & ···  & ··· & ···  \\\color{blue} {a_{y1}}  & \color{blue} {a_{y2}}  & ··· & \color{blue} {a_{yn}} \\···  & ···  & ··· & ···  \\\color{red} {a_{x1}}  & \color{red} {a_{x2}}  & ··· & \color{red} {a_{xn}} \\···  & ···  & ··· & ···  \\a_{n1}  & a_{n2}  & ··· & a_{nn} \\\end{array}\right|=\sum\nolimits_{1}^n(-1)^{    \tau(P_{1}P_{2}···\color{blue}{P_{y}}···\color{red}{P_{x}}···P_{n})}a_{1P_{1}}a_{2P_{2}}···\color{blue}{a_{yP_{y}}}···\color{red}{a_{xP_{x}}}···a_{nP_{n}}

每一项逆序数都对换1次(奇数次)即D_{2}相对D所有累加数符号都发生了变化 \Rightarrow D = -D_{2}

推论一:奇数次互换变号,偶数次互换不变

            推导:D=-D_{2} \ \&\&\ D_{2}=-D_{3}\Rightarrow D=D_{3}

推论二:如果行列式有两行(或两列)完全相同,则行列式等于0

            推导:D= -D\Rightarrow D=0


性质三、行列式的某一行(或一列)中所有元素同时乘以一个数k,等同于用数k乘以行列式

推导:

D = \left|\begin{array}{}a_{ij} \end{array}\right| =\left|\begin{array}{}\color{} {a_{11}}  & \color{} {a_{12}}  & ··· & \color{} {a_{1n}} \\···  & ···  & ··· & ···  \\\color{red} {k}a_{x1}  & \color{red} {k}a_{x2} & ··· & \color{red} {k}a_{xn} \\···  & ···  & ··· & ···  \\a_{n1}  & a_{n2}  & ··· & a_{nn} \\\end{array}\right|=\sum\nolimits_{1}^n(-1)^{    \tau(P_{1}P_{2}···P_{n})}a_{1P_{1}}a_{2P_{2}}···\color{red}{k}a_{xP_{x}}···a_{nP_{n}} \\ \ \\=\color{red}{k}\sum\nolimits_{1}^n(-1)^{    \tau(P_{1}P_{2}···P_{n})}a_{1P_{1}}a_{2P_{2}}···a_{xP_{x}}···a_{nP_{n}}

推论一:行列式某一行(或一列)的公因子可以提到行列式外

推论二:行列式外的乘积影子可以乘到行列式某一行(或一列)中


性质四、如果行列式有两行(或两列)元素成比例,则行列式等于0

推导:

D  = \left|\begin{array}{ccc}a_{ij} \end{array}\right| =\left|\begin{array}{ccc}\color{} {a_{11}}  & \color{} {a_{12}}  & ··· & \color{} {a_{1n}} \\···  & ···  & ··· & ···  \\\color{red}{k}\color{blue}{x_{1}}  & \color{red}{k}\color{blue}{x_{2}}  & ··· & \color{red}{k}\color{blue}{x_{n}} \\···  & ···  & ··· & ···  \\\color{blue}{x_{1}}  & \color{blue} {x_{2}}  & ··· & \color{blue} {x_{n}} \\···  & ···  & ··· & ···  \\a_{n1}  & a_{n2}  & ··· & a_{nn} \\\end{array}\right|=\color{red}{k}\left|\begin{array}{ccc}\color{} {a_{11}}  & \color{} {a_{12}}  & ··· & \color{} {a_{1n}} \\···  & ···  & ··· & ···  \\\color{blue}{x_{1}}  & \color{blue}{x_{2}}  & ··· & \color{blue}{x_{n}} \\···  & ···  & ··· & ···  \\\color{blue}{x_{1}}  & \color{blue} {x_{2}}  & ··· & \color{blue} {x_{n}} \\···  & ···  & ··· & ···  \\a_{n1}  & a_{n2}  & ··· & a_{nn} \\\end{array}\right|

由性质二-推论二可知 两行或两列完全相同,则行列式为0  \Rightarrow  D = k*0 = 0


性质五、如果行列式某一行(或一列)中所有的元素都是两数之和,则可分解成两个行列式的和

推导:

D = \left|\begin{array}{}a_{ij} \end{array}\right| =\left|\begin{array}{}a_{11}  & a_{12}  & ··· & a_{1n} \\···  & ···  & ··· & ···  \\\color{red}{b_{x1}} + \color{blue}{c_{x1}}  & \color{red}{b_{x2}} + \color{blue}{c_{x2}} & ··· & \color{red}{b_{xn}} + \color{blue}{c_{xn}} \\···  & ···  & ··· & ···  \\a_{n1}  & a_{n2}  & ··· & a_{nn} \\\end{array}\right|=\sum\nolimits_{1}^n(-1)^{    \tau(P_{1}P_{2}···P_{n})}a_{1P_{1}}a_{2P_{2}}···(\color{red}{b_{xP_{x}}} + \color{blue}{c_{xP_{x}}})···a_{nP_{n}} \\ \ \\=\sum\nolimits_{1}^n(-1)^{    \tau(P_{1}P_{2}···P_{n})}a_{1P_{1}}a_{2P_{2}}···\color{red}{b_{xP_{x}}}···a_{nP_{n}}+\sum\nolimits_{1}^n(-1)^{    \tau(P_{1}P_{2}···P_{n})}a_{1P_{1}}a_{2P_{2}}···\color{red}{c_{xP_{x}}}···a_{nP_{n}}


上一篇 下一篇

猜你喜欢

热点阅读