机器学习-21:MachineLN之SVM源码

2018-02-01  本文已影响0人  MachineLP

我想说:

其实很多事情一定要找好自己的节奏,因为你会发现你不会的东西太多了,千万不要被带跑了。

上两节:MachineLN之SVM(1)MachineLN之SVM(2),讲述了SVM的原理,今天看一下带详细注释的源码 和 tensorflow使用梯度下降求解svm参数:切记好代码都是敲出来的,并且越敲越有感觉,本想着还是截图, 但是代码太多了

from numpy import *  
from time import sleep  
# 依旧是数据的准备  
def loadDataSet(fileName):  
    # 定义保存样本和标签的列表;  
    dataMat = []; labelMat = [a]  
    # 打开数据文件  
    fr = open(fileName)  
    # 读取文件中的每一行;  
    for line in fr.readlines():  
        # 将每行的数据通过制表符分开;  
        lineArr = line.strip().split('\t')  
        # 前两个为样本数据数据,第二个为标签数据;  
        dataMat.append([float(lineArr[0]), float(lineArr[1])])  
        labelMat.append(float(lineArr[2]))  
    # 返回样本和标签,用于SVM的训练;  
    return dataMat,labelMat  
# 用于产生一个随机数,用于下面随机获取一个样本;  
def selectJrand(i,m):  
    j=i #we want to select any J not equal to i  
    while (j==i):  
        j = int(random.uniform(0,m))  
    return j  
# 相当于给定alpha一个范围,大于最大值的话,赋值为最大值,小于最小值的话,就赋值最小值;   
def clipAlpha(aj,H,L):  
    if aj > H:   
        aj = H  
    if L > aj:  
        aj = L  
    return aj  
# 简化版的smo算法求alpha和b;  
# 下面是smo算法的流程;  
# 此简化版的smo是严格按照上一节MachineLN之SVM(2)的手撕smo来的;  
def smoSimple(dataMatIn, classLabels, C, toler, maxIter):  
    # 将样本集转化为矩阵格式, 将样本的标签也转化为矩阵格式和,用于后面的矩阵运算, 主要两个地方用到:预测和eta。   
    dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()  
    # 初始化偏置,然后获取矩阵的行数和列数, 行数用来输出初始化下面的alpha.   
    b = 0; m,n = shape(dataMatrix)  
    # 初始化alphas为为m行1列;  
    alphas = mat(zeros((m,1)))  
    iter = 0  
    # 定义迭代次数  
    while (iter < maxIter):  
        alphaPairsChanged = 0  
        # 遍历每个样本;  
        for i in range(m):  
            # 计算第i个样本的预测标签; 用于计算差值;   
            fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b  
            # 计算两个的差值用于 KKT 条件的判断  
            Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions  
            # 正间隔 和 负间隔 都会被测试; 并且还要保证 alpha的值在 [0, C]之间  
            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):  
                # 从 i到m中随机选择一个样本  
                j = selectJrand(i,m)  
                # 计算此样本的预测值  
                fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b  
                # 预测值和真实值的差值: 用于后面计算alpha.   
                Ej = fXj - float(labelMat[j])  
                # 用于保存未更新的alpha,方便b的计算;  
                alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();  
                # 计算不同的情况下 aphpa 的最小值和最大值, 这里可以参考手撕smo;  
                if (labelMat[i] != labelMat[j]):  
                    L = max(0, alphas[j] - alphas[i])  
                    H = min(C, C + alphas[j] - alphas[i])  
                else:  
                    L = max(0, alphas[j] + alphas[i] - C)  
                    H = min(C, alphas[j] + alphas[i])  
                if L==H: print "L==H"; continue  
                # 下面就是计算alpha2 和 进行剪枝后,求alpha1;  
                eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T  
                if eta >= 0: print "eta>=0"; continue  
                alphas[j] -= labelMat[j]*(Ei - Ej)/eta  
                alphas[j] = clipAlpha(alphas[j],H,L)  
                if (abs(alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; continue  
                alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j  
                # 更新参数b1, b2, 和手撕smo算法流程一样;  
                b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T  
                b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T  
                # 根据参数b1, b2得到b;  
                if (0 < alphas[i]) and (C > alphas[i]): b = b1  
                elif (0 < alphas[j]) and (C > alphas[j]): b = b2  
                else: b = (b1 + b2)/2.0  
                alphaPairsChanged += 1  
                print "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)  
        if (alphaPairsChanged == 0): iter += 1  
        else: iter = 0  
        print "iteration number: %d" % iter  
    return b,alphas  
# 下面就是核函数:线性核函数 和 rbf核函数  
def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space  
    m,n = shape(X)  
    K = mat(zeros((m,1)))  
    if kTup[0]=='lin': K = X * A.T   # 线性核  
    elif kTup[0]=='rbf':  
        for j in range(m):  
            deltaRow = X[j,:] - A  
            K[j] = deltaRow*deltaRow.T  
        K = exp(K/(-1*kTup[1]**2))  # rbf核  
    else: raise NameError('Houston We Have a Problem -- \  
    That Kernel is not recognized')  
    return K  
# 利用完整的 Platt SMO算法加速运算;  
# 与简化版相比:实现alpha的更改和代数运算的优化环节一摸一样,在优化过程中唯一不同的就是选择alpha的方式。  
# 用于设置模型中的数据和参数: 训练样本、标签、学习率、KKT条件的参数设置值、alpha、b、核函数的参数;  
class optStruct:  
    def __init__(self,dataMatIn, classLabels, C, toler, kTup):  # Initialize the structure with the parameters   
        self.X = dataMatIn  
        self.labelMat = classLabels  
        self.C = C  
        self.tol = toler  
        self.m = shape(dataMatIn)[0]  
        self.alphas = mat(zeros((self.m,1)))  
        self.b = 0  
        self.eCache = mat(zeros((self.m,2)))  # 用于误差缓存  
        self.K = mat(zeros((self.m,self.m)))  
        for i in range(self.m):  
            self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)  
# 计算预测值和真实值的标签的差值;          
def calcEk(oS, k):  
    fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)  
    Ek = fXk - float(oS.labelMat[k])  
    return Ek  
# 在选择第一个alpha值后,算法会通过内循环来选择第二个alpha值,在优化过程中,会通过最大步长的方式来获得第二个alpha值  
# 选择合适的第二个样本; 计算Ej   
def selectJ(i, oS, Ei):           
    maxK = -1; maxDeltaE = 0; Ej = 0  
    # 将其放在Ei缓存区。  
    oS.eCache[i] = [1,Ei]  #set valid #choose the alpha that gives the maximum delta E  
    # 返回的是非零E值所对应的alpha值,而不是E本身,程序会在所有的值上进行循环并选择其中使得改变最大的那个值;  
    # else中, 在第一次的循环的话, 那么就随机选择一个alpha值。  
    validEcacheList = nonzero(oS.eCache[:,0].A)[0]  
    if (len(validEcacheList)) > 1:  
        for k in validEcacheList:     
            if k == i: continue   
            Ek = calcEk(oS, k)  
            deltaE = abs(Ei - Ek)  
            if (deltaE > maxDeltaE):  
                maxK = k; maxDeltaE = deltaE; Ej = Ek  
        return maxK, Ej  
    else:     
        j = selectJrand(i, oS.m)  
        Ej = calcEk(oS, j)  
    return j, Ej  
# 更新选取新样本后的E值  
def updateEk(oS, k):#after any alpha has changed update the new value in the cache  
    Ek = calcEk(oS, k)  
    oS.eCache[k] = [1,Ek]  
# 下面的算法流程和简化版的smo流程差不多  
def innerL(i, oS):  
    Ei = calcEk(oS, i)  
    if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):  
        j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand  
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();  
        if (oS.labelMat[i] != oS.labelMat[j]):  
            L = max(0, oS.alphas[j] - oS.alphas[i])  
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])  
        else:  
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)  
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])  
        if L==H: print "L==H"; return 0  
        eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel  
        if eta >= 0: print "eta>=0"; return 0  
        oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta  
        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)  
        updateEk(oS, j) #added this for the Ecache  
        if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0  
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j  
        updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction  
        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]  
        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]  
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1  
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2  
        else: oS.b = (b1 + b2)/2.0  
        return 1  
    else: return 0  
# Platt AMO算法  
def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)):    #full Platt SMO  
    oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)  
    iter = 0  
    entireSet = True; alphaPairsChanged = 0  
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):  
        alphaPairsChanged = 0  
        if entireSet:   #go over all  
            for i in range(oS.m):          
                alphaPairsChanged += innerL(i,oS)  
                print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)  
            iter += 1  
        else:#go over non-bound (railed) alphas  
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]  
            for i in nonBoundIs:  
                alphaPairsChanged += innerL(i,oS)  
                print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)  
            iter += 1  
        if entireSet: entireSet = False #toggle entire set loop  
        elif (alphaPairsChanged == 0): entireSet = True    
        print "iteration number: %d" % iter  
    return oS.b,oS.alphas  
# 通过计算的alpha计算权重w值  
def calcWs(alphas,dataArr,classLabels):  
    X = mat(dataArr); labelMat = mat(classLabels).transpose()  
    m,n = shape(X)  
    w = zeros((n,1))  
    # 计算 w  
    for i in range(m):  
        w += multiply(alphas[i]*labelMat[i],X[i,:].T)  
    return w  
# 使用rbf核的svm,进行测试  
def testRbf(k1=1.3):  
    dataArr,labelArr = loadDataSet('testSetRBF.txt')  
    # 通过Platt AMO算法计算alpha和b的值  
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important  
    #   
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()  
    # 构建支持向量矩阵, 选择 0<alpha<C  
    svInd=nonzero(alphas.A>0)[0]  
    # 仅选支持向量用于kernel相乘  
    sVs=datMat[svInd] #get matrix of only support vectors  
    labelSV = labelMat[svInd];  
    print "there are %d Support Vectors" % shape(sVs)[0]  
    m,n = shape(datMat)  
    errorCount = 0  
    # 下面是计算在训练集的错误率  
    for i in range(m):  
        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))  
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b  
        if sign(predict)!=sign(labelArr[i]): errorCount += 1  
    print "the training error rate is: %f" % (float(errorCount)/m)  
    # 下面是求在测试集的错误率  
    dataArr,labelArr = loadDataSet('testSetRBF2.txt')  
    errorCount = 0  
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()  
    m,n = shape(datMat)  
    for i in range(m):  
        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))  
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b  
        if sign(predict)!=sign(labelArr[i]): errorCount += 1      
    print "the test error rate is: %f" % (float(errorCount)/m)  
# 下面是手写体识别的svm测试  
def img2vector(filename):  
    returnVect = zeros((1,1024))  
    fr = open(filename)  
    for i in range(32):  
        lineStr = fr.readline()  
        for j in range(32):  
            returnVect[0,32*i+j] = int(lineStr[j])  
    return returnVect  
def loadImages(dirName):  
    from os import listdir  
    hwLabels = []  
    trainingFileList = listdir(dirName)           #load the training set  
    m = len(trainingFileList)  
    trainingMat = zeros((m,1024))  
    for i in range(m):  
        fileNameStr = trainingFileList[i]  
        fileStr = fileNameStr.split('.')[0]     #take off .txt  
        classNumStr = int(fileStr.split('_')[0])  
        if classNumStr == 9: hwLabels.append(-1)  
        else: hwLabels.append(1)  
        trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))  
    return trainingMat, hwLabels      
def testDigits(kTup=('rbf', 10)):  
    dataArr,labelArr = loadImages('trainingDigits')  
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)  
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()  
    svInd=nonzero(alphas.A>0)[0]  
    sVs=datMat[svInd]   
    labelSV = labelMat[svInd];  
    print "there are %d Support Vectors" % shape(sVs)[0]  
    m,n = shape(datMat)  
    errorCount = 0  
    for i in range(m):  
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)  
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b  
        if sign(predict)!=sign(labelArr[i]): errorCount += 1  
    print "the training error rate is: %f" % (float(errorCount)/m)  
    dataArr,labelArr = loadImages('testDigits')  
    errorCount = 0  
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()  
    m,n = shape(datMat)  
    for i in range(m):  
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)  
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b  
        if sign(predict)!=sign(labelArr[i]): errorCount += 1      
    print "the test error rate is: %f" % (float(errorCount)/m)  
# SVM梯度下降进参数求解  
import matplotlib.pyplot as plt    
import numpy as np    
import tensorflow as tf    
from sklearn import datasets    
from tensorflow.python.framework import ops    
ops.reset_default_graph()    
# Create graph    
sess = tf.Session()    
# Load the data    
# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]    
iris = datasets.load_iris()    
x_vals = np.array([[x[0], x[3]] for x in iris.data])    
y_vals = np.array([1 if y==0 else -1 for y in iris.target])    
# Split data into train/test sets    
train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)    
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))    
x_vals_train = x_vals[train_indices]    
x_vals_test = x_vals[test_indices]    
y_vals_train = y_vals[train_indices]    
y_vals_test = y_vals[test_indices]    
# Declare batch size    
batch_size = 100    
# Initialize placeholders    
x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)    
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)    
# Create variables for linear regression    
A = tf.Variable(tf.random_normal(shape=[2,1]))    
b = tf.Variable(tf.random_normal(shape=[1,1]))    
# Declare model operations    
model_output = tf.subtract(tf.matmul(x_data, A), b)    
# 定义 hinge loss function  
# Declare vector L2 'norm' function squared    
l2_norm = tf.reduce_sum(tf.square(A))    
# Declare loss function    
# Loss = max(0, 1-pred*actual) + alpha * L2_norm(A)^2    
# L2 regularization parameter, alpha    
alpha = tf.constant([0.01])    
# Margin term in loss    
classification_term = tf.reduce_mean(tf.maximum(0., tf.subtract(1., tf.multiply(model_output, y_target))))    
# Put terms together    
loss = tf.add(classification_term, tf.multiply(alpha, l2_norm))    
# Declare prediction function    
prediction = tf.sign(model_output)    
accuracy = tf.reduce_mean(tf.cast(tf.equal(prediction, y_target), tf.float32))    
# Declare optimizer    
my_opt = tf.train.GradientDescentOptimizer(0.01)    
train_step = my_opt.minimize(loss)    
# Initialize variables    
init = tf.global_variables_initializer()    
sess.run(init)    
# Training loop    
loss_vec = []    
train_accuracy = []    
test_accuracy = []    
for i in range(500):    
    rand_index = np.random.choice(len(x_vals_train), size=batch_size)    
    rand_x = x_vals_train[rand_index]    
    rand_y = np.transpose([y_vals_train[rand_index]])    
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})    
    temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})    
    loss_vec.append(temp_loss)    
    train_acc_temp = sess.run(accuracy, feed_dict={x_data: x_vals_train, y_target: np.transpose([y_vals_train])})    
    train_accuracy.append(train_acc_temp)    
    test_acc_temp = sess.run(accuracy, feed_dict={x_data: x_vals_test, y_target: np.transpose([y_vals_test])})    
    test_accuracy.append(test_acc_temp)    
    if (i+1)%100==0:    
        print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b)))    
        print('Loss = ' + str(temp_loss))    
# Extract coefficients    
[[a1], [a2]] = sess.run(A)    
[[b]] = sess.run(b)    
slope = -a2/a1    
y_intercept = b/a1    
# Extract x1 and x2 vals    
x1_vals = [d[1] for d in x_vals]    
# Get best fit line    
best_fit = []    
for i in x1_vals:    
  best_fit.append(slope*i+y_intercept)    
# Separate I. setosa    
setosa_x = [d[1] for i,d in enumerate(x_vals) if y_vals[i]==1]    
setosa_y = [d[0] for i,d in enumerate(x_vals) if y_vals[i]==1]    
not_setosa_x = [d[1] for i,d in enumerate(x_vals) if y_vals[i]==-1]    
not_setosa_y = [d[0] for i,d in enumerate(x_vals) if y_vals[i]==-1]    
# Plot data and line    
plt.plot(setosa_x, setosa_y, 'o', label='I. setosa')    
plt.plot(not_setosa_x, not_setosa_y, 'x', label='Non-setosa')    
plt.plot(x1_vals, best_fit, 'r-', label='Linear Separator', linewidth=3)    
plt.ylim([0, 10])    
plt.legend(loc='lower right')    
plt.title('Sepal Length vs Pedal Width')    
plt.xlabel('Pedal Width')    
plt.ylabel('Sepal Length')    
plt.show()    
# Plot train/test accuracies    
plt.plot(train_accuracy, 'k-', label='Training Accuracy')    
plt.plot(test_accuracy, 'r--', label='Test Accuracy')    
plt.title('Train and Test Set Accuracies')    
plt.xlabel('Generation')    
plt.ylabel('Accuracy')    
plt.legend(loc='lower right')    
plt.show()    
# Plot loss over time    
plt.plot(loss_vec, 'k-')    
plt.title('Loss per Generation')    
plt.xlabel('Generation')    
plt.ylabel('Loss')    
plt.show()    

推荐阅读:

  1. 机器学习-1:MachineLN之三要素

  2. 机器学习-2:MachineLN之模型评估

  3. 机器学习-3:MachineLN之dl

  4. 机器学习-4:DeepLN之CNN解析

  5. 机器学习-5:DeepLN之CNN权重更新(笔记)

  6. 机器学习-6:DeepLN之CNN源码

  7. 机器学习-7:MachineLN之激活函数

  8. 机器学习-8:DeepLN之BN

  9. 机器学习-9:MachineLN之数据归一化

  10. 机器学习-10:MachineLN之样本不均衡

  11. 机器学习-11:MachineLN之过拟合

  12. 机器学习-12:MachineLN之优化算法

  13. 机器学习-13:MachineLN之kNN

  14. 机器学习-14:MachineLN之kNN源码

  15. 机器学习-15:MachineLN之感知机

  16. 机器学习-16:MachineLN之感知机源码

  17. 机器学习-17:MachineLN之逻辑回归

  18. 机器学习-18:MachineLN之逻辑回归源码

  19. 机器学习-19:MachineLN之SVM(1)

  20. 机器学习-20:MachineLN之SVM(2)

  21. 机器学习-21:MachineLN之SVM源码

image

版权声明:本文为博主原创文章,未经博主允许不得转载。有问题可以加微信:lp9628(注明CSDN)。

上一篇下一篇

猜你喜欢

热点阅读