python手写kmeans
2019-07-16 本文已影响0人
不分享的知识毫无意义
kmeans是数据挖掘中最简单的一个算法, 正是因为它简单,在很多面试中有的面试官会要求你手写一段kmeans的代码。笔者结合自己对kmeans的理解,采用西瓜书中数据手写了一个kmeans算法,跟网上版本略有出入,但思路是差不多的,可以供大家思考。
首先来说一下kmeans的原理,其实就是根据距离将样本划分为k类,最终实现类内距离最短和类间距离最大,其他原理比较简单就不多说了,大家如果有疑问自己百度一下相关内容。下面贴出代码。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#知识点用map函数将str转化为floatlist
base_data = []
with open('xigua.txt') as f:
for line in f.readlines()[1:]:
data_line = line.strip().split(',')
data_line = list(map(float, data_line))
base_data.append(data_line)
print(base_data)
def cal_distance(x, y):
x = np.array(x)
y = np.array(y)
return np.sqrt(np.sum(np.power(x-y, 2)))
# distance = caldistance(base_data[0], base_data[1])
# print(distance)
def cal_eplision(x, y, eplision):
if x - y <= eplision:
return 1
else:
return 0
def set_init_center(data_set, k):
data_set = np.array(data_set)
init_center = np.zeros((k, data_set.shape[1]))
max_feature = np.max(data_set, axis=0)
min_feature = np.min(data_set, axis=0)
for i in range(k):
for j in range(data_set.shape[1]):
init_center[i, j] = min_feature[j] + np.random.random() * (max_feature[j] - min_feature[j])
#array可以直接整行或者整列运行
return init_center
# init_center = set_init_center(base_data, 5)
# print(init_center)
def kmeans(data_set, k):
assert k <= len(data_set)
data_set = np.array(data_set)
data_with_label = np.zeros(len(data_set))
init_center = set_init_center(data_set, k)
flag = 1
optimized_distance = 0
while flag:
sum_point = np.zeros((1, k))
sum_feature = np.zeros((k, len(data_set[0])))
sum_distance = np.zeros((1, k))
for i in range(len(data_set)):
min_center = 0
min_distance = 10e+6
for j in range(len(init_center)):
distance_tmp = cal_distance(init_center[j], data_set[i])
if distance_tmp <= min_distance:
min_center = j
min_distance = distance_tmp
data_with_label[i] = min_center
sum_point[0, min_center] += 1
sum_feature[min_center, :] += data_set[i, :]
sum_distance[0, min_center] += min_distance
sum_point = np.repeat(sum_point, len(data_set[0]), axis=0).reshape(k, len(data_set[0]))
new_center = sum_feature/sum_point
# np.mean() array也可以用逻辑切片
# print(sum_distance)
sum_distance_tmp = sum(sum_distance[0])
# print(sum_distance_tmp)
if not cal_eplision(sum_distance_tmp, optimized_distance, 10e-6):
flag = 0
optimized_distance = sum_distance_tmp
return new_center, data_with_label
def plot_kmeans(base_data, k):
new_center, data_with_label = kmeans(base_data, k)
base_data = np.array(base_data)
new_base_data = np.insert(base_data, 0, values=data_with_label, axis=1)
new_base_data = pd.DataFrame(new_base_data)
fig, ax = plt.subplots(figsize=(10, 8))
corlor_set = ['r', 'b', 'g', 'm', 'y', 'k']
for i in range(k):
new_base_data_tmp = new_base_data[new_base_data[0] == i]
ax.scatter(new_base_data_tmp[1], new_base_data_tmp[2], c=corlor_set[i])
plt.show()
plot_kmeans(base_data, 3)