通用大数据平台的六层架构模型
2018-05-14 本文已影响3人
秒懂数字经济
1. 数据源层:包括传统的数据库,数据仓库,分布式数据库,NOSQL数据库,半结构化数据,无结构化数据,爬虫,日志系统等,是大数据平台的数据产生机构。
2. 数据整理层:包括数据清洗、数据转换、数据加工、数据关联、数据标注、数据预处理、数据加载、数据抽取等工作,该层的作用是将raw data加工成product data。
3. 数据存储层(数据中心):存储了经过清洗处理后的可用于生产系统的数据,比如元数据,业务数据库,模型数据库等,该层直接面向应用系统,要求高可靠、高并发、高精度。
4. 数据建模与挖掘层:该层实现对数据的深加工,根据业务需要,建立适用于业务的数据统计分析模型,建立大数据运行处理平台,运用数据分析、数据挖掘、深度学习等算法从生产数据集中挖掘出数据内在的价值,为业务系统提供数据和决策支持。
5. 行业应用层:深入分析行业数据特点,梳理行业数据产品需求,建立适用于不同行业的数据应用产品。
6. 数据可视化:以智能报表、专题报告、BI展示、平台接口等多种方式提供数据展示和数据共享服务。
大数据平台六层架构模型