链表
2021-01-06 本文已影响0人
lieon
线性表 是具有 n 个相同类型元素 的有限 序列 ( n ≥ 0 )
- 常见的线性表有
- 数组
- 链表
- 栈
- 队列
- 哈希表(散列)
动态数组的缺点
- 可能会造成大量的内存浪费
链表
- 链表 是一种 链式存储 的线性表,所有元素的内存地址不一定是连续的
- 在接口设计时:从表头,表尾,中间入手, 表头的特殊情况有: index == 0 && size == 0, index == 0 && size == 1,表尾的特殊情况有: index == size && size == 1, 确定链表结构后,接口的设计可手动把链表的数据流程画出来,这样接口的逻辑就很清晰了
单向链表
template<typename E>
class LinkedList: public AbstractList<E> {
template<typename Element>
class Node {
public:
Element element ;
Node<Element> *next { nullptr };
Node(const Element &element, Node<Element> * const next) {
this->element = element;
this->next = next;
}
~Node() {
}
};
private:
Node<E> *first { nullptr };
// 获取index位置对应的节点对象
Node<E> & nodeAt(int index) {
this->rangeCheck(index);
Node<E> *node = first;
for (int i = 0; i < index; i++) {
node = node->next;
}
return *node;
}
public:
LinkedList() {
this->m_size = 0;
}
~LinkedList() {
clear();
}
void clear() override {
this->m_size = 0;
if (first != nullptr) {
delete first;
first = nullptr;
}
}
bool contains(const E &element) override {
return false;
}
E& set(int index, const E &element) override {
Node<E> &node = nodeAt(index);
E& old = node.element;
node.element = element;
return old;
}
void insert(int index, const E &element) override {
if (index == 0) {
first = new Node<E>(element, first);
} else {
Node<E> &prev = nodeAt(index - 1);
Node<E> *node = new Node<E>(element, prev.next);
prev.next = node;
}
this->m_size++;
}
E& get(int index) override {
return nodeAt(index).element;
}
int indexOf(const E &element) override {
Node<E> * node = first;
for (int i = 0; i < this->m_size; i++) {
if (element == node->element) {
return i;
}
node = node->next;
}
return -1;
}
E& removeAt(int index) override {
Node<E> *node = first;
if (index == 0) {
first = first->next;
} else {
Node<E> &prev = this->nodeAt(index - 1);
node = prev.next;
prev.next = node->next;
}
this->m_size--;
return node->element;
}
bool isEmpty() override {
return this->m_size > 0;
}
};
单向循环链表
image.png
template<typename E>
class SingleCycleLinkedList: public AbstractList<E> {
private:
// 获取index位置对应的节点对象
Node<E> & nodeAt(int index) {
this->rangeCheck(index);
Node<E> *node = first;
for (int i = 0; i < index; i++) {
node = node->next;
}
return *node;
}
public:
Node<E> *first { nullptr };
SingleCycleLinkedList() {
this->m_size = 0;
}
~SingleCycleLinkedList() {
clear();
}
void clear() override {
this->m_size = 0;
if (first != nullptr) {
Node<E> *node = first->next;
while (node != nullptr) {
node = node->next;
delete node->next;
}
delete first;
first = nullptr;
}
}
bool contains(const E &element) override {
return false;
}
E& set(int index, const E &element) override {
Node<E> &node = nodeAt(index);
E& old = node.element;
node.element = element;
return old;
}
void insert(int index, const E &element) override {
this->rangeCheckForAdd(index);
if (index == this->m_size) { // (index == 0 && size == 0) || (index == size && size != 0)
if (this->m_size == 0) {
first = new Node<E>(element, nullptr);
first->next = first;
} else {
Node<E> &prev = nodeAt(index - 1);
Node<E> *node = new Node<E>(element, first);
prev.next = node;
}
} else {
if (index == 0) {
Node<E> &last = nodeAt(this->m_size - 1);
Node<E> *oldFirst = first;
Node<E> *node = new Node<E>(element, oldFirst);
last.next = node;
first = node;
} else {
Node<E> &prev = nodeAt(index - 1);
Node<E> *node = new Node<E>(element, prev.next);
prev.next = node;
}
}
this->m_size++;
}
E& removeAt(int index) override {
this->rangeCheck(index);
Node<E> *node = first;
if (index == 0) { // 头部
Node<E> &oldLast = nodeAt(this->m_size - 1);
first = first->next;
oldLast.next = first;
} else if (index == this->m_size) { // 尾部
Node<E> &prev = this->nodeAt(index - 1);
node = prev.next;
prev.next = first;
} else {
Node<E> &prev = this->nodeAt(index - 1);
node = prev.next;
prev.next = node->next;
}
this->m_size--;
E &element = node->element;
delete node;
return element;
}
E& get(int index) override {
return nodeAt(index).element;
}
int indexOf(const E &element) override {
Node<E> * node = first;
for (int i = 0; i < this->m_size; i++) {
if (element == node->element) {
return i;
}
node = node->next;
}
return -1;
}
bool isEmpty() override {
return this->m_size > 0;
}
void printAll() {
for (int i = 0; i < this->m_size; i++) {
Node<E> &node = nodeAt(i);
cout << node.element << "_" << node.next->element << endl;
}
}
};
双向链表
image.png
template <typename E>
class DoubleNode {
public:
E element;
DoubleNode<E>* prev { nullptr };
DoubleNode<E>* next { nullptr };
DoubleNode(E element, DoubleNode<E>* prev, DoubleNode<E>* next) {
this->element = element;
this->prev = prev;
this->next = next;
}
~DoubleNode() {
}
};
template <typename E>
class DoubleLinkedList: public AbstractList<E> {
private:
// 获取index位置对应的节点对象
DoubleNode<E> & nodeAt(int index) {
this->rangeCheck(index);
if (index < this->m_size >> 1) {
DoubleNode<E> *node = first;
for (int i = 0; i < index; i++) {
node = node->next;
}
return *node;
} else {
DoubleNode<E> *node = last;
for (int i = this->m_size - 1; i > index; i--) {
node = node->prev;
}
return *node;
}
}
public:
DoubleNode<E> *first { nullptr };
DoubleNode<E> *last { nullptr };
DoubleLinkedList() {
this->m_size = 0;
}
~DoubleLinkedList() {
clear();
}
void clear() override {
this->m_size = 0;
if (first != nullptr) {
DoubleNode<E> *node = first->next;
while (node != nullptr) {
node = node->next;
delete node->next;
}
delete first;
first = nullptr;
}
}
bool contains(const E &element) override {
return false;
}
E& set(int index, const E &element) override {
DoubleNode<E> &node = nodeAt(index);
E& old = node.element;
node.element = element;
return old;
}
void insert(int index, const E &element) override {
if (this->m_size == 0) { // 链表没得值
DoubleNode<E> *node = new DoubleNode<E>(element, nullptr, nullptr);
first = node;
last = node;
} else if (index == 0) { // 在头部插入
DoubleNode<E> *oldFirst = first;
DoubleNode<E> *node = new DoubleNode<E>(element, nullptr, oldFirst);
oldFirst->prev = node;
first = node;
} else if (index == this->m_size) { // 在尾部插入
DoubleNode<E> *oldLast = last;
DoubleNode<E> *node = new DoubleNode<E>(element, oldLast, nullptr);
oldLast->next = node;
last = node;
} else { // 在中间插入
this->rangeCheckForAdd(index);
DoubleNode<E> &oldCurrent = nodeAt(index);
DoubleNode<E> *node = new DoubleNode<E>(element, oldCurrent.prev, &oldCurrent);
oldCurrent.prev->next = node;
oldCurrent.prev = node;
}
this->m_size++;
}
E& get(int index) override {
return nodeAt(index).element;
}
int indexOf(const E &element) override {
DoubleNode<E> * node = first;
for (int i = 0; i < this->m_size; i++) {
if (element == node->element) {
return i;
}
node = node->next;
}
return -1;
}
E& removeAt(int index) override {
this->rangeCheck(index);
DoubleNode<E> &node = nodeAt(index);
if (node.prev == nullptr) {
DoubleNode<E> *oldFirst = first;
first = node.next;
node.next->prev = nullptr;
delete oldFirst;
} else if(node.next == nullptr) {
DoubleNode<E> *oldlast = last;
last = node.prev;
node.prev->next = nullptr;
delete oldlast;
} else {
DoubleNode<E> *oldPrev = node.prev;
DoubleNode<E> *oldnext= node.next;
node.prev->next = node.next;
node.next->prev = node.prev;
delete oldPrev;
delete oldnext;
oldPrev = nullptr;
oldnext = nullptr;
}
this->m_size--;
return node.element;
}
bool isEmpty() override {
return this->m_size > 0;
}
};
双向循环链表
-
接口设计思路与单向循环链表类似
image.png
删除链表中的一个节点
- 给定单向链表的头指针和一个要删除的节点的值,定义一个函数删除该节点。返回删除后的链表的头节点。
- 示例 1:
- 输入: head = [4,5,1,9], val = 5
- 输出: [4,1,9]
- 解释: 给定你链表中值为 5 的第二个节点,那么在调用了你的函数之后,该链表应变为 4 -> 1 -> 9.
- 示例 2:
- 输入: head = [4,5,1,9], val = 1
- 输出: [4,5,9]
- 解释: 给定你链表中值为 1 的第三个节点,那么在调用了你的函数之后,该链表应变为 4 -> 5 -> 9.
Node<E>* deleteNode(E val) {
Node<E> * node = first;
while (node != nullptr && node->next != nullptr) {
if (node->element == val) {
return node->next;
} if (node->next->next == nullptr && node->next->element == val) {
node->next = nullptr;
return first;
} else if (node->next->element == val) {
node->next = node->next->next;
return first;
}
node = node->next;
}
return nullptr;
}
翻转链表
- 定义两个指针: prepre 和 curcur ;prepre 在前 curcur 在后。
- 每次让 prepre 的 nextnext 指向 curcur ,实现一次局部反转
- 局部反转完成之后, prepre 和 curcur 同时往前移动一个位置
- 循环上述过程,直至 prepre 到达链表尾部
Node<E>* reverseList() {
Node<E> *pre = first;
Node<E> *cur = nullptr;
while (pre != nullptr) {
Node<E> *temp = pre->next;
pre->next = cur;
cur = pre;
pre = temp;
}
return cur;
}
判断链表是否有环
- 解题思路
- 采用快慢指针,有环时,快指针和慢指针会指向同一个地址
bool hasCycle() {
if (first == nullptr || first->next == nullptr) {
return false;
}
Node<E> *slow = first;
Node<E> *fast = first->next;
while (fast != nullptr && fast->next != nullptr) {
if (fast == slow) {
return true;
}
slow = slow->next;
fast = fast->next->next;
}
return false;
}