ThreadLocal 源码解读

2021-10-27  本文已影响0人  Always_July

ThreadLocal 翻译就是线程局部变量,就是这个变量只存在于当前的线程,只存在于当前的线程,那么完美解决了并发共享资源导致并发不安全的问题。

java.lang.ThreadLocal#get

    /**
     * Returns the value in the current thread's copy of this
     * thread-local variable.  If the variable has no value for the
     * current thread, it is first initialized to the value returned
     * by an invocation of the {@link #initialValue} method.
     *
     * @return the current thread's value of this thread-local
     */
    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t); // 1
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this); 
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }
   
    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }

// 1 从当前线程获取一个ThreadLocalMap,ThreadLocalMap.java是Thread中的一个静态内部类,让我们看一下ThreadLocalMap.Entry类。

java.lang.ThreadLocal.ThreadLocalMap.Entry

 /**
         * The entries in this hash map extend WeakReference, using
         * its main ref field as the key (which is always a
         * ThreadLocal object).  Note that null keys (i.e. entry.get()
         * == null) mean that the key is no longer referenced, so the
         * entry can be expunged from table.  Such entries are referred to
         * as "stale entries" in the code that follows.
         */
static class Entry extends WeakReference<ThreadLocal<?>> {
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal<?> k, Object v) {
                super(k);  // 1
                value = v;
            }
        }

注释中说道当entry.get() == null 代表key不再被引用,这个entry可以从table中释放了,也可以看到Entry.java继承了WeakReference.java(弱引用)

弱引用概念

弱引用也是用来描述那些非必须对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只
能生存到下一次垃圾收集发生为止。当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2版之后提供了WeakReference类来实现弱引用。

// 1 代码 super(k); 可以看出ThreadLocal 作为WeakReference的referent。那么在下一次垃圾回收时ThreadLocal会被回收掉。

让我们理一下引用关系 Thread->ThreadLocalMap-> Entry[]->Entry-> ThreadLocal 和 Value。ThreadLocal回收后,看一下getEntry方法,发现getEntry方法将无法获取到Entry,也就无法获取到value。此时这个value无法被获取的,也就是发生了内存泄漏。

java.lang.ThreadLocal.ThreadLocalMap#getEntry

 private Entry getEntry(ThreadLocal<?> key) {
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
            if (e != null && e.get() == key)
                return e;
            else
                return getEntryAfterMiss(key, i, e);
        }

如果当前ThreadLocal匹配不到key,那么将调用getEntryAfterMiss方法。

java.lang.ThreadLocal.ThreadLocalMap#getEntryAfterMiss

 /**
         * Version of getEntry method for use when key is not found in
         * its direct hash slot.
         *
         * @param  key the thread local object
         * @param  i the table index for key's hash code
         * @param  e the entry at table[i]
         * @return the entry associated with key, or null if no such
         */
        private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) {
                ThreadLocal<?> k = e.get();
                if (k == key)
                    return e;
                if (k == null)  // 1 key为null,释放Entry。
                    expungeStaleEntry(i);
                else
                    i = nextIndex(i, len);
                e = tab[i];
            }
            return null;
        }

注释:for use when key is not found in its direct hash slot。
// 1 key为null,释放Entry。

java.lang.ThreadLocal.ThreadLocalMap#expungeStaleEntry

 /**
         * Expunge a stale entry by rehashing any possibly colliding entries
         * lying between staleSlot and the next null slot.  This also expunges
         * any other stale entries encountered before the trailing null.  See
         * Knuth, Section 6.4
         *
         * @param staleSlot index of slot known to have null key
         * @return the index of the next null slot after staleSlot
         * (all between staleSlot and this slot will have been checked
         * for expunging).
         */
        private int expungeStaleEntry(int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;

            // expunge entry at staleSlot
            tab[staleSlot].value = null;
            tab[staleSlot] = null;
            size--;

            // Rehash until we encounter null
            Entry e;
            int i;
            for (i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal<?> k = e.get();
                if (k == null) {
                    e.value = null;
                    tab[i] = null;
                    size--;
                } else {
                    int h = k.threadLocalHashCode & (len - 1);
                    if (h != i) {
                        tab[i] = null;

                        // Unlike Knuth 6.4 Algorithm R, we must scan until
                        // null because multiple entries could have been stale.
                        while (tab[h] != null)
                            h = nextIndex(h, len);
                        tab[h] = e;
                    }
                }
            }
            return i;
        }

这里不禁让人思考为什么这里要使用WeakReference?是有助于避免内存泄漏吗?

使用WeakReference,可以在ThreadLocal是弱引用时回收。value在java.lang.ThreadLocal.ThreadLocalMap#getEntryAfterMiss ,java.lang.ThreadLocal.ThreadLocalMap#expungeStaleEntry 方法中进行回收掉。

每次调用完成后都调用ThreadLocal.remove() 方法完全可以避免这个内存泄漏问题。

真正的内存泄漏的情况

当threadLocal对象设为null时,value再也无法获取到,发生了内存泄漏,然后使用线程池,这个线程结束,线程放回线程池中不销毁,这个线程一直不被使用,或者分配使用了又不再调用ThreadLocal.get,ThreadLocal.set方法,那么这时就会发生真正的内存泄露。

内存泄漏的Demo

环境:java1.8
虚拟机启动参数:-Xms64M -Xmx64M

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class ThreadLocalMemoryLeak {

    private static ExecutorService executorService = Executors.newFixedThreadPool(100);

    public static void main(String[] args) throws InterruptedException, NoSuchFieldException, IllegalAccessException {

        for (int i = 0; i <80 ; i++) {
            // 等待垃圾回收执行
            Thread.sleep(100);

            ThreadLocal<ByteObject> threadLocal = new ThreadLocal<ByteObject>(){
                @Override
                protected ByteObject initialValue() {
                    return new ByteObject();
                }
            };
            executorService.execute(()->{
                threadLocal.get();
                // 不remove将导致内存溢出
                //threadLocal.remove();
            });

        }
        Thread.sleep(3000);
        executorService.shutdown();
    }

    public static class ByteObject{
        // 5MB
        private byte [] bytes = new byte[5*1024*1024];

        @Override
        protected void finalize() throws Throwable {
            System.out.println(" finalize");
        }
    }
}


注释掉remove代码,将导致内存溢出。threadLocal初始化代码 放在for循环里,for循环后不再被引用,在垃圾回收的时候将释放内存。因为线程词核心线程数100 大于需要的线程数80,不会触发在同一个线程调用get方法,所以导致ByteObject不会被释放而内存溢出。

如果将核心线程池改为1,此时无需remove,也不会存在内存溢出的情况,因为重复调用同一个线程的get方法,所以也会触发回收ByteObject。

在for循环开始初我sleep 100 毫秒,让垃圾回收有时间进行,否则,即使不注释掉remove也会导致内存溢出。

参考资料

ThreadLocal (Java Platform SE 8 )
关于Java中的WeakReference
ThreadLocal源码解读

上一篇下一篇

猜你喜欢

热点阅读