sparkSpark

Spark SQL Catalyst优化器

2018-03-11  本文已影响79人  chenfh5

记录一下个人对sparkSql的catalyst这个函数式的可扩展的查询优化器的理解,目录如下,

0. Overview
1. Catalyst工作流程
2. Parser模块
3. Analyzer模块
4. Optimizer模块
5. SparkPlanner模块
6. Job UI
7. Reference

Overview

Spark SQL的核心是Catalyst优化器,是以一种新颖的方式利用Scala的的模式匹配和quasiquotes机制来构建的可扩展查询优化器。

sparkSql pipeline

sparkSql的catalyst优化器是整个sparkSql pipeline的中间核心部分,其执行策略主要两方向,

  1. 基于规则优化/Rule Based Optimizer/RBO
    • 一种经验式、启发式优化思路
    • 对于核心优化算子join有点力不从心,如两张表执行join,到底使用broadcaseHashJoin还是sortMergeJoin,目前sparkSql是通过手工设定参数来确定的,如果一个表的数据量小于某个阈值(默认10M?)就使用broadcastHashJoin
      • nestedLoopsJoin,P,Q双表两个大循环, O(M*N)
      • sortMergeJoin是P,Q双表排序后互相游标
      • broadcastHashJoin,PQ双表中小表放入内存hash表,大表遍历O(1)方式取小表内容
  2. 基于代价优化/Cost Based Optimizer/CBO
    • 针对每个join评估当前两张表使用每种join策略的代价,根据代价估算确定一种代价最小的方案
    • 不同physical plans输入到代价模型(目前是统计),调整join顺序,减少中间shuffle数据集大小,达到最优输出

Catalyst工作流程

other

Optimizer是catalyst工作最后阶段了,后面生成physical plan以及执行,主要是由sparkSql来完成。


Parser模块

将sparkSql字符串切分成一个一个token,再根据一定语义规则解析为一个抽象语法树/AST。Parser模块目前基本都使用第三方类库ANTLR来实现,比如Hive,presto,sparkSql等。

parser切词

Spark 1.x版本使用的是Scala原生的Parser Combinator构建词法和语法分析器,而Spark 2.x版本使用的是第三方语法解析器工具ANTLR4。

Spark2.x SQL语句的解析采用的是ANTLR4,ANTLR4根据语法文件SqlBase.g4自动解析生成两个Java类:词法解析器SqlBaseLexer和语法解析器SqlBaseParser。

SqlBaseLexer和SqlBaseParser都是使用ANTLR4自动生成的Java类。使用这两个解析器将SQL字符串语句解析成了ANTLR4的ParseTree语法树结构。然后在parsePlan过程中,使用AstBuilder.scala将ParseTree转换成catalyst表达式逻辑计划LogicalPlan。


Analyzer模块

通过解析后ULP有了基本骨架,但是系统对表的字段信息是不知道的。如sum,select,join,where还有score,people都表示什么含义,此时需要基本的元数据信息schema catalog来表达这些token。最重要的元数据信息就是,

Analyzer会再次遍历整个AST,对树上的每个节点进行数据类型绑定以及函数绑定,比如people词素会根据元数据表信息解析为包含age、id以及name三列的表,people.age会被解析为数据类型为int的变量,sum会被解析为特定的聚合函数,

词义注入
//org.apache.spark.sql.catalyst.analysis.Analyzer.scala
  lazy val batches: Seq[Batch] = Seq( //不同Batch代表不同的解析策略
    Batch("Substitution", fixedPoint,
      CTESubstitution,
      WindowsSubstitution,
      EliminateUnions,
      new SubstituteUnresolvedOrdinals(conf)),
    Batch("Resolution", fixedPoint,
      ResolveTableValuedFunctions ::
      ResolveRelations ::  //通过catalog解析表或列基本数据类型,命名等信息
      ResolveReferences :: //解析从子节点的操作生成的属性,一般是别名引起的,比如people.age
      ResolveCreateNamedStruct ::
      ResolveDeserializer ::
      ResolveNewInstance ::
      ResolveUpCast ::
      ResolveGroupingAnalytics ::
      ResolvePivot ::
      ResolveOrdinalInOrderByAndGroupBy ::
      ResolveMissingReferences ::
      ExtractGenerator ::
      ResolveGenerate ::
      ResolveFunctions :: //解析基本函数,如max,min,agg
      ResolveAliases ::
      ResolveSubquery :: //解析AST中的字查询信息
      ResolveWindowOrder ::
      ResolveWindowFrame ::
      ResolveNaturalAndUsingJoin ::
      ExtractWindowExpressions ::
      GlobalAggregates :: //解析全局的聚合函数,比如select sum(score) from table
      ResolveAggregateFunctions ::
      TimeWindowing ::
      ResolveInlineTables ::
      TypeCoercion.typeCoercionRules ++
      extendedResolutionRules : _*),
    Batch("Nondeterministic", Once,
      PullOutNondeterministic),
    Batch("UDF", Once,
      HandleNullInputsForUDF),
    Batch("FixNullability", Once,
      FixNullability),
    Batch("Cleanup", fixedPoint,
      CleanupAliases)
  )

Optimizer模块

Optimizer是catalyst的核心,分为RBO和CBO两种。
RBO的优化策略就是对语法树进行一次遍历,模式匹配能够满足特定规则的节点,再进行相应的等价转换,即将一棵树等价地转换为另一棵树。SQL中经典的常见优化规则有,

由下往上走,从join后再filter优化为filter再join 从`100+80`优化为`180`,避免每一条record都需要执行一次`100+80`的操作 剪裁不需要的字段,特别是嵌套里面的不需要字段。如只需people.age,不需要people.address,那么可以将address字段丢弃
//@see http://blog.csdn.net/oopsoom/article/details/38121259
//org.apache.spark.sql.catalyst.optimizer.Optimizer.scala
  def batches: Seq[Batch] = {
    // Technically some of the rules in Finish Analysis are not optimizer rules and belong more
    // in the analyzer, because they are needed for correctness (e.g. ComputeCurrentTime).
    // However, because we also use the analyzer to canonicalized queries (for view definition),
    // we do not eliminate subqueries or compute current time in the analyzer.
    Batch("Finish Analysis", Once,
      EliminateSubqueryAliases,
      ReplaceExpressions,
      ComputeCurrentTime,
      GetCurrentDatabase(sessionCatalog),
      RewriteDistinctAggregates) ::
    //////////////////////////////////////////////////////////////////////////////////////////
    // Optimizer rules start here
    //////////////////////////////////////////////////////////////////////////////////////////
    // - Do the first call of CombineUnions before starting the major Optimizer rules,
    //   since it can reduce the number of iteration and the other rules could add/move
    //   extra operators between two adjacent Union operators.
    // - Call CombineUnions again in Batch("Operator Optimizations"),
    //   since the other rules might make two separate Unions operators adjacent.
    Batch("Union", Once,
      CombineUnions) ::
    Batch("Subquery", Once,
      OptimizeSubqueries) ::
    Batch("Replace Operators", fixedPoint,
      ReplaceIntersectWithSemiJoin,
      ReplaceExceptWithAntiJoin,
      ReplaceDistinctWithAggregate) ::
    Batch("Aggregate", fixedPoint,
      RemoveLiteralFromGroupExpressions,
      RemoveRepetitionFromGroupExpressions) ::
    Batch("Operator Optimizations", fixedPoint,
      // Operator push down
      PushProjectionThroughUnion,
      ReorderJoin,
      EliminateOuterJoin,
      PushPredicateThroughJoin, //谓词下推之一
      PushDownPredicate, //谓词下推之一
      LimitPushDown,
      ColumnPruning, //列值剪裁,常用于聚合操作,join左右孩子操作,合并相邻project列
      InferFiltersFromConstraints,
      // Operator combine
      CollapseRepartition,
      CollapseProject,
      CollapseWindow,
      CombineFilters, //谓词下推之一,合并两个相邻的Filter。合并2个节点,就可以减少树的深度从而减少重复执行过滤的代价
      CombineLimits, //合并Limits
      CombineUnions,
      // Constant folding and strength reduction
      NullPropagation,
      FoldablePropagation,
      OptimizeIn(conf),
      ConstantFolding, //常量累加之一
      ReorderAssociativeOperator,
      LikeSimplification,
      BooleanSimplification, //常量累加之一,布尔表达式的提前短路
      SimplifyConditionals,
      RemoveDispensableExpressions,
      SimplifyBinaryComparison,
      PruneFilters,
      EliminateSorts,
      SimplifyCasts,
      SimplifyCaseConversionExpressions,
      RewriteCorrelatedScalarSubquery,
      EliminateSerialization,
      RemoveRedundantAliases,
      RemoveRedundantProject) ::
    Batch("Check Cartesian Products", Once,
      CheckCartesianProducts(conf)) ::
    Batch("Decimal Optimizations", fixedPoint,
      DecimalAggregates) ::
    Batch("Typed Filter Optimization", fixedPoint,
      CombineTypedFilters) ::
    Batch("LocalRelation", fixedPoint,
      ConvertToLocalRelation,
      PropagateEmptyRelation) ::
    Batch("OptimizeCodegen", Once,
      OptimizeCodegen(conf)) ::
    Batch("RewriteSubquery", Once,
      RewritePredicateSubquery,
      CollapseProject) :: Nil
  }

SparkPlanner模块

至此,OLP已经得到了比较完善的优化,然而此时OLP依然没有办法真正执行,它们只是逻辑上可行,实际上spark并不知道如何去执行这个OLP。

optimized logical plan -> physical plan

此时就需要将左边的OLP转换为physical plan物理执行计划,将逻辑上可行的执行计划变为spark可以真正执行的计划。

CBO off CBO on

CBO中常见的优化是join换位,以便尽量减少中间shuffle数据集大小,达到最优输出。


Job UI

sp.prepare.PrepareController

Reference

上一篇 下一篇

猜你喜欢

热点阅读