loss函数之BCELoss
BCELoss
二分类交叉熵损失
单标签二分类
一个输入样本对应于一个分类输出,例如,情感分类中的正向和负向
对于包含个样本的batch数据 ,计算如下:
其中, 为第个样本对应的。
是超参数,对于单标签二分类,设不设置, 没有影响
一般情况下,中各个元素的取值为0或1,代表真实类别
class BCELoss(_WeightedLoss):
__constants__ = ['reduction', 'weight']
def __init__(self, weight=None, size_average=None, reduce=None, reduction='mean'):
super(BCELoss, self).__init__(weight, size_average, reduce, reduction)
def forward(self, input, target):
return F.binary_cross_entropy(input, target, weight=self.weight, reduction=self.reduction)
pytorch中通过torch.nn.BCELoss
类实现,也可以直接调用F.binary_cross_entropy
函数,代码中的weight
即是。size_average
与reduce
已经弃用。reduction有三种取值mean
, sum
, none
,对应不同的返回. 默认为mean
。
其中,当reduction取值mean
时,对应于上述的计算
验证函数:证明loss函数的输出和我们理解的输出一致
def validate_loss(output, target, weight=None, pos_weight=None):
# 处理正负样本不均衡问题
if pos_weight is None:
label_size = output.size()[1]
pos_weight = torch.ones(label_size)
# 处理多标签不平衡问题
if weight is None:
label_size = output.size()[1]
weight = torch.ones(label_size)
val = 0
for li_x, li_y in zip(output, target):
for i, xy in enumerate(zip(li_x, li_y)):
x, y = xy
loss_val = pos_weight[i] * y * math.log(x, math.e) + (1 - y) * math.log(1 - x, math.e)
val += weight[i] * loss_val
return -val / (output.size()[0] * output.size(1))
使用torch.nn.BCELoss
类实现loss计算
import torch
import torch.nn.functional as F
import torch.nn as nn
import math
# 单标签二分类
m = nn.Sigmoid()
weight = torch.tensor([0.8])
loss_fct = nn.BCELoss(reduction="mean", weight=weight)
input_src = torch.Tensor([[0.8], [0.9], [0.3]])
target = torch.Tensor([[1], [1], [0]])
print(input_src.size())
print(target.size())
output = m(input_src)
loss = loss_fct(output, target)
print(loss.item())
# 验证计算
validate = validate_loss(output, target, weight)
print(validate.item())
# 输出
torch.Size([3, 1])
torch.Size([3, 1])
0.4177626073360443
0.4177626371383667
使用binary_cross_entropy
函数实现loss计算
# 单标签二分类
weight = torch.tensor([0.8])
input_src = torch.Tensor([[0.8], [0.9], [0.3]])
target = torch.Tensor([[1], [1], [0]])
print(input_src.size())
print(target.size())
output = torch.sigmoid(input_src)
loss = F.binary_cross_entropy(output, target, weight=weight, reduction='mean')
print(loss.item())
# 验证计算
validate = validate_loss(output, target, weight)
print(validate.item())
torch.Size([3, 1])
torch.Size([3, 1])
0.4177626073360443
0.4177626371383667
多标签二分类
什么是多标签分类?比如说给一篇文章分配话题,它既可以是科技类又可以是教育类,科技和教育就是这篇文章的两个标签。又比如判断一幅图中包含什么,它可能既包含房子又包含马路。房子和马路就是这幅图对应的两个标签。将每一种标签,看作是二分类。一个输入样本对应于多个标签,每个标签对应一个二分类(是或不是)。
的计算方式和上面一致,对于包含个样本的batch数据 ,每个样本可能有个标签,计算如下:
其中, 为第个样本对应的
是超参数, 用于处理标签间的样本不均衡问题。对于一批训练集,若其中某个标签的出现次数较少,计算时应该给予更高的权重。
多标签二分类例子:
import torch
import torch.nn.functional as F
import torch.nn as nn
import math
weight = torch.Tensor([0.8, 1, 0.8])
input = torch.Tensor([[0.8, 0.9, 0.3], [0.8, 0.9, 0.3], [0.8, 0.9, 0.3], [0.8, 0.9, 0.3]])
target = torch.Tensor([[1, 1, 0], [1, 1, 0], [1, 1, 0], [1, 1, 0]])
print(input.size())
print(target.size())
output = torch.sigmoid(input)
loss = F.binary_cross_entropy(output, target, reduction='none', weight=weight)
print(loss) # none
loss = F.binary_cross_entropy(output, target, reduction='mean', weight=weight)
print(loss.item())
# 验证计算
validate = validate_loss(output, target, weight)
print(validate.item())
torch.Size([4, 3])
torch.Size([4, 3])
tensor([[0.2969, 0.3412, 0.6835],
[0.2969, 0.3412, 0.6835],
[0.2969, 0.3412, 0.6835],
[0.2969, 0.3412, 0.6835]])
0.4405061900615692
0.4405062198638916
BCEWithLogitsLoss
将Sigmoid层和BCELoss类合并在一个类中.
pytorch中通过torch.nn.BCEWithLogitsLoss
类实现, 也可以直接调用函数F.binary_cross_entropy_with_logits
class BCEWithLogitsLoss(_Loss):
def __init__(self, weight: Optional[Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean',
pos_weight: Optional[Tensor] = None) -> None:
super(BCEWithLogitsLoss, self).__init__(size_average, reduce, reduction)
self.register_buffer('weight', weight)
self.register_buffer('pos_weight', pos_weight)
def forward(self, input: Tensor, target: Tensor) -> Tensor:
assert self.weight is None or isinstance(self.weight, Tensor)
assert self.pos_weight is None or isinstance(self.pos_weight, Tensor)
return F.binary_cross_entropy_with_logits(input, target,
self.weight,
pos_weight=self.pos_weight,
reduction=self.reduction)
BCEWithLogitsLoss = Sigmoid + BCELoss
例子:
m = nn.Sigmoid()
weight = torch.tensor([0.8])
loss_fct = nn.BCELoss(reduction="mean", weight=weight)
loss_fct_logit = nn.BCEWithLogitsLoss(reduction="mean", weight=weight)
input_src = torch.Tensor([0.8, 0.9, 0.3])
target = torch.Tensor([1, 1, 0])
print(input_src)
print(target)
output = m(input_src)
loss = loss_fct(output, target)
loss_logit = loss_fct_logit(input_src, target)
print(loss.item())
print(loss_logit.item())
# 结果一致
tensor([0.8000, 0.9000, 0.3000])
tensor([1., 1., 0.])
0.4177626371383667
0.4177626371383667
值得注意的是,BCEWithLogitsLoss类比BCELoss类,还多了一个pos_weight参数,pos_weight用于处理每种标签中正负样本不均衡问题,作为正类的权重。具体的,若正类样本较多,设置pos_weight<1
,若负类样本较多,设置pos_weight>1
。
input = torch.Tensor([[0.8, 0.9, 0.3], [0.8, 0.9, 0.3], [0.8, 0.9, 0.3], [0.8, 0.9, 0.3]])
target = torch.Tensor([[1, 1, 0], [1, 1, 0], [1, 1, 0], [1, 1, 0]])
print(input.size())
print(target.size())
output = torch.sigmoid(input)
weight = torch.tensor([0.8, 1, 0.8])
loss = F.binary_cross_entropy_with_logits(input, target, reduction='mean', pos_weight=weight)
print(loss.item())
# 验证计算
validate = validate_loss(output, target, pos_weight=weight)
print(validate.item())
torch.Size([4, 3])
torch.Size([4, 3])
0.49746325612068176
0.49746325612068176