奥数自学研究

高中奥数 2022-03-05

2022-03-05  本文已影响0人  不为竞赛学奥数

2022-03-05-01

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P027 习题13)

已知n个实数x_{1},x_{2},\cdots ,x_{n}的算术平均值为a.证明:
\sum\limits_{k=1}^{n}\left(x_{k}-a\right)^{2}\leqslant \dfrac{1}{2}\left(\sum\limits_{k=1}^{n}\left|x_{k}-a\right|\right)^{2}.

证明

先证明a=0时的情况.此时\sum\limits_{k=1}^{n}x_{k}^{2}= -2\sum\limits_{1\leqslant i<j\leqslant n}x_{i}x_{j}\leqslant 2\sum\limits_{i\neq j}^{n}\left|x_{i}x_{j}\right|,于是2\sum\limits_{k=1}^{n}x_{k}^{2}\leqslant \sum\limits_{k=1}^{n}x_{k}^{2}+2\sum\limits_{i\neq j}^{n}\left|x_{i}x_{j}\right|=\left(\sum\limits_{k=1}^{n}\left|x_{k}\right|\right)^{2},结论成立.

a\ne 0时,令y_{k}=x_{k}-a,则y_{1},y_{2},\cdots ,y_{n}算术平均值为0,于是\sum\limits_{k=1}^{n}x_{k}^{2}\leqslant \dfrac{1}{2}\cdot \left(\sum\limits_{k=1}^{n}\left|y_{k}\right|\right)^{2},故原不等式成立.

2022-03-05-02

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P027 习题14)

x,y,z\geqslant 0,求证:
x\left(y+z-x\right)^{2}+y\left(z+x-y\right)^{2}+z\left(x+y-z\right)^{2}\geqslant 3xyz.
并确定等号成立的条件.

证明

无妨设x+y+z=1,则原不等式等价于
4x^{3}+4y^{3}+4z^{3}-4\left(x^{2}+y^{2}+z^{2}\right)+1\geqslant 3xyz.
又由于x^{3}+y^{3}+z^{3}=1+3xyz-3\left(xy+yz+zx\right),x^{2}+y^{2}+z^{2}=1-2\left(xy+yz+zx\right),故原不等式等价于xy+yz+zx-\dfrac{9}{4}xyz\leqslant \dfrac{1}{4}.

不妨设x\geqslant y\geqslant z\geqslant 0,则x+y\geqslant \dfrac{2}{3},z\leqslant \dfrac{1}{3}.设x+y=\dfrac{2}{3}+\delta,z=\dfrac{1}{3}-\delta.其中\delta \in \left[0,\dfrac{1}{3}\right].于是
\begin{aligned} xy+z\left(x+y\right)-\dfrac{9}{4}xyz&=xy+\left(\dfrac{1}{3}-\delta\right)\left(\dfrac{2}{3}+\delta\right)-\dfrac{9}{4}xy\left(\dfrac{1}{3}-\delta\right)\\ &=xy\left(\dfrac{1}{4}+\dfrac{9}{4}\delta\right)+\dfrac{2}{9}-\delta^{2}-\dfrac{1}{3}\delta\\ &\leqslant \left(\dfrac{1}{3}+\dfrac{1}{2}\delta\right)^{2}\cdot \left(\dfrac{1}{4}+\dfrac{9}{4}\delta\right)+\dfrac{2}{9}-\delta^{2}-\dfrac{1}{3}\delta\\ &=\dfrac{3}{16}\delta^{2}\left(3\delta-1\right)+\dfrac{1}{4}\\ &\leqslant 0, \end{aligned}
因此结论成立.

2022-03-05-03

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P027 习题15)

已知正整数n\geqslant 2,实数a_{1}\geqslant a_{2}\geqslant \cdots \geqslant a_{n}>0,b_{1}\geqslant b_{2}\geqslant \cdots \geqslant b_{n}>0,并且,有a_{1}a_{2}\cdots a_{a}=b_{1}b_{2}\cdots b_{n};\sum\limits_{1\leqslant i<j\leqslant n}\left(a_{i}-a_{j}\right)\leqslant \sum\limits_{1\leqslant i<j\leqslant n}\left(b_{i}-b_{j}\right).求证:\sum\limits_{i=1}^{n}a_{i}\leqslant\left(n-1\right)\sum\limits_{i=1}^{n}b_{i}.

证明

n=2时,\left(a_{1}+a_{2}\right)^{2}-\left(a_{1}-a_{2}\right)^{2}=\left(b_{1}+b_{2}\right)^{2}-\left(b_{1}-b_{2}\right)^{2}

a_{1}-a_{2}\leqslant b_{1}-b_{2},故a_{1}+a_{2}\leqslant b_{1}+b_{2}.

n=3时,
\begin{aligned} &2b_{1}+2b_{2}+2b_{3}-\left(a_{1}+a_{2}+a_{3}\right)\\ =&b_{1}+2b_{2}+3b_{3}+\left(b_{1}-b_{3}\right)-a_{2}-2a_{3}-\left(a_{1}-a_{3}\right)\\ \geqslant &b_{1}+2b_{2}+3b_{3}-a_{2}-2a_{3}\qquad\qquad\qquad\qquad(*)\\ =&\left(b_{1}-b_{3}\right)+2b_{2}+4b_{3}-\left(a_{2}-a_{3}\right)-3a_{3}\\ \geqslant &2b_{2}+4b_{3}-3a_{3}.\qquad\qquad\qquad\qquad(**) \end{aligned}
(1)若2b_{3}\geqslant a_{3},则2b_{2}+4b_{3}\geqslant 6b_{3}\geqslant 3a_{3},由(**)知结论成立.

(2)若b_{2}\geqslant a_{2},则b_{1}+2b_{2}\geqslant 3b_{2}\geqslant 3a_{2}\geqslant a_{2}+2a_{3},由(*)知结论成立.

(3)若2b_{3}<a_{3},b_{2}<a_{2},则b_{1}\geqslant 2a_{1},故2\left(b_{1}+ b_{2}+b_{3}\right)> 2b_{1}>4a_{1}>a_{1}+a_{2}+a_{3},结论仍成立.

对当n\geqslant 3时的一般情况,无妨设b_{1}b_{2}\cdots b_{n}=1.

如果a_{1}\leqslant n-1\sum\limits_{i=1}^{n}a_{i}\leqslant n\left(n-1\right)\leqslant \left(n-1\right)\sum\limits_{i=1}^{n}b_{i},结论成立.

下设a_{1}>n-1,则
\begin{aligned} \sum\limits_{1 \leqslant i<j \leqslant n}\left(a_{i}-a_{j}\right) &=\sum\limits_{i=1}^{n}(n-2 i+1) a_{i} \\ &=\sum\limits_{i=1}^{n} a_{i}+\sum\limits_{i=1}^{n}(n-2 i) a_{i} \\ & \geqslant \sum\limits_{i=1}^{n} a_{i}+(n-2)\left(a_{1}-a_{n-1}\right)-n a_{n} \\ & \geqslant \sum\limits_{i=1}^{n} a_{i}+\left(a_{1}-a_{n-1}\right)-n a_{n}(n \geqslant 3) \end{aligned}
\begin{aligned} \sum\limits_{1 \leqslant i<j \leqslant n}\left(b_{i}-b_{j}\right) &=\sum\limits_{i=1}^{n}(n-2 i+1) b_{i} \\ &=\sum\limits_{i=1}^{n}\left[(n-1) b_{i}+(2-2 i) b_{i}\right] \\ & \leqslant(n-1) \sum\limits_{i=1}^{n} b_{i}-2 b_{2}-2(n-1) b_{n} \end{aligned}
因此,不妨设a_{1}-a_{n-1}-na_{n}+2b_{2}+2\left(n-1\right)b_{n}<0,不然结论显然成立.

于是,有na_{n}>2\left(n-1\right)b_{n}+2b_{2}\geqslant 2nb_{n},故a_{n}>2b_{n}.又由a_{1}a_{2}\cdots a_{n}=1a_{n}\leqslant 1,所以a_{1}-\left(n-1\right)a_{n}>\left(n-1\right)-\left(n-1\right)=0.故2b_{2}<a_{n-1}+a_{n}\leqslant 2a_{n-1},即b_{2}<a_{n-1}.

因此,b_{1}b_{2}\cdots b_{n}=a_{1}a_{2}\cdots a_{n}>2b_{n}\cdot b_{2}\cdot a_{1}a_{2}\cdots a_{n-2},即有b_{1}b_{3}b_{4}\cdots b_{n-1}>2a_{1}a_{2}\cdots a_{n-2}.

b_{3}\leqslant b_{2}<a_{n-1}\leqslant a_{n-2},b_{4}\leqslant b_{3}<a_{n-2}\leqslant a_{n-3},\cdots ,b_{n-1}\leqslant b_{n-2}<a_{3}\leqslant a_{2},则b_{1}>2a_{1}.

所以(n-1) \sum\limits_{i=1}^{n} b_{i}>2(n-1) a_{1}>n a_{1} \geqslant \sum\limits_{i=1}^{n} a_{i}(n \geqslant 3).结论也成立

2022-03-05-04

(来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P027 习题16)

x,y,z\in \mathbb{R}^{+},求证:
\left(xy+yz+zx\right)\left[\dfrac{1}{\left(x+y\right)^{2}+}+\dfrac{1}{\left(y+z\right)^{2}}+\dfrac{1}{\left(z+x\right)^{2}}\right]\geqslant \dfrac{9}{4}.

证明

易见,此题等价于证明:\sum\limits_{c y c} \dfrac{y z}{x(y+z)^{2}} \geqslant \dfrac{9}{4(x+y+z)}.

不妨设x\geqslant y\geqslant z,且x+y+z=1.则
\begin{aligned} \sum\limits_{c y c} \dfrac{4 y z}{x(y+z)^{2}} &=\sum\limits_{c y c} \dfrac{(y+z)^{2}-(y-z)^{2}}{x(y+z)^{2}} \\ &=\sum\limits_{c y c} \dfrac{1}{x}-\sum\limits_{c y c} \dfrac{(y-z)^{2}}{x(y+z)^{2}} \\ &=\sum\limits_{c y c} \dfrac{1}{x} \cdot \sum\limits_{c y c} x-\sum\limits_{c y c} \dfrac{(y-z)^{2}}{x(y+z)^{2}} \\ &=9+\sum\limits_{c y c}\left(\dfrac{\sqrt{z}}{\sqrt{y}}-\sqrt{\dfrac{y}{z}}\right)^{2}-\sum\limits_{c y c} \dfrac{(y-z)^{2}}{x(y+z)^{2}} \\ &=9+\sum\limits_{c y c}\left(\dfrac{(y-z)^{2}}{y z}-\dfrac{(y-z)^{2}}{x(y+z)^{2}}\right) \\ &=9+S, \end{aligned}
式中,S=\sum\limits_{cyc}\left(y-z\right)^{2}\cdot \left(\dfrac{1}{yz}-\dfrac{1}{x\left(y+z\right)^{2}}\right)).

由于x>\dfrac{1}{4},所以\dfrac{1}{yz}\geqslant \dfrac{4}{\left(y+z\right)^{2}}>\dfrac{1}{x\left(y+z\right)^{2}},

又由于\dfrac{1}{xz}-\dfrac{1}{y\left(x+z\right)^{2}}\geqslant 0,

y\left(x+z\right)^{2}\geqslant xz\left(x+y+z\right),

x^{2}\left(y-z\right)+xz\left(y-z\right)+yz^{2}\geqslant 0,

因此S\geqslant \left(x-y\right)^{2}\cdot \left(\dfrac{1}{xz}-\dfrac{1}{y\left(x+z\right)^{2}}+\dfrac{1}{xy}-\dfrac{1}{z\left(x+y\right)^{2}}\right),
\begin{aligned} &\dfrac{1}{xz}-\dfrac{1}{y\left(x+z\right)^{2}}+\dfrac{1}{xy}-\dfrac{1}{z\left(|x|-y\right)^{2}}\\ =&\dfrac{\left(x+z\right)^{2}-x}{xy\left(x+z\right)^{2}}+\dfrac{\left(x+y\right)^{2}-x}{xz\left(x+y\right)^{2}}\\ \geqslant &\dfrac{\left(x+y\right)^{2}-x+\left(x+z\right)^{2}-x}{xy\left(x+z\right)^{2}}\\ =&\dfrac{2x^{2}+2xy+2xz+y^{2}+z^{2}-2x\left(x+y+z\right)}{xy\left(x+z\right)^{2}}\\ \geqslant& 0, \end{aligned}
于是结论成立.

上一篇 下一篇

猜你喜欢

热点阅读