统计学-统计量与抽样分布
2019-08-25 本文已影响0人
Vicky_1ecd
基本概念
样本是进行统计推断的依据。但在实际应用时,一般不是直接使用样本本身,而是对样本进行整理和加工,即针对具体问题构造适当的函数--统计量,利用这些函数来进行统计推断,揭示总体的统计特性。
![](https://img.haomeiwen.com/i16811143/232b1d41da8d7005.jpeg)
统计量的定义
设X1,X2,…,Xn是来自总体X的样本,x1,x2,…,xn为其样本值,则称不含任何总体分布中未知参数的连续函数![](https://img.haomeiwen.com/i16811143/95f9d9b06a1d675e.png)
![](https://img.haomeiwen.com/i16811143/20e8f659356d529c.png)
常用统计量
![](https://img.haomeiwen.com/i16811143/63b0b5d737e21949.png)
(1)样本平均值
![](https://img.haomeiwen.com/i16811143/7ab58c9e5c83650e.png)
其观察值
![](https://img.haomeiwen.com/i16811143/3563a0e65c70abf3.png)
(2)(修正)样本方差
![](https://img.haomeiwen.com/i16811143/4911e82341941d26.jpeg)
![](https://img.haomeiwen.com/i16811143/2732355be9c90c27.jpeg)
(3)(修正)样本标准差
![](https://img.haomeiwen.com/i16811143/bb1134476da2902e.png)
其观察值
![](https://img.haomeiwen.com/i16811143/fb064c0ed7a3c74d.png)
(4)样本k阶(原点)矩
![](https://img.haomeiwen.com/i16811143/6c19c404c441e98c.png)
其观察值
![](https://img.haomeiwen.com/i16811143/72e11af43732aaff.png)
(5)样本k阶中心矩
![](https://img.haomeiwen.com/i16811143/7feba7792c2e5e04.png)
其观察值
![](https://img.haomeiwen.com/i16811143/c6bd79d31dbe4455.png)
常见分布
完全由样本确定的函数就是统计量。统计量是随机变量,它的分布称为抽样分布。
1. 标准正态分布及其上侧分位数
定义 设X~N(0,1), 对任意0<α<1,若P(X>zα)=α,则称zα为标准正态分布的上侧α分位数。其中![](https://img.haomeiwen.com/i16811143/a08203c516709e74.png)
![](https://img.haomeiwen.com/i16811143/f641962152b55812.jpeg)
![](https://img.haomeiwen.com/i16811143/f749919d0c0e2489.png)
2.卡方分布
![](https://img.haomeiwen.com/i16811143/0515d4bf2e232f32.png)
![](https://img.haomeiwen.com/i16811143/d6526ba80cd3760b.png)
![](https://img.haomeiwen.com/i16811143/465288e19b53d45f.png)
![](https://img.haomeiwen.com/i16811143/a9d0a2b681626ab5.png)
![](https://img.haomeiwen.com/i16811143/0908d43aa4ab9163.png)
![](https://img.haomeiwen.com/i16811143/439a24aeb1ae34ed.png)
密度曲线:
卡方分布密度曲线
卡方分布的性质
![](https://img.haomeiwen.com/i16811143/af9c81860af1c31d.jpeg)
![](https://img.haomeiwen.com/i16811143/6751eb62893e6d93.jpeg)
![](https://img.haomeiwen.com/i16811143/d6e7cde0c89d38fc.jpeg)
3. t分布
![](https://img.haomeiwen.com/i16811143/608a66bd7570a246.png)
![](https://img.haomeiwen.com/i16811143/3dd663d3720561ae.png)
![](https://img.haomeiwen.com/i16811143/72b873d387c7fe3c.png)
![](https://img.haomeiwen.com/i16811143/5ecfb862a3f681ef.jpeg)
![](https://img.haomeiwen.com/i16811143/545e972c4d1bbe6c.jpeg)
![](https://img.haomeiwen.com/i16811143/bb7a591c67f9926b.jpeg)
4.F分布
![](https://img.haomeiwen.com/i16811143/124e7d54d6b7a7bc.jpeg)
![](https://img.haomeiwen.com/i16811143/ab65952f3064b58c.jpeg)
F分布分位点:
![](https://img.haomeiwen.com/i16811143/c8b67dce8112ccf7.jpeg)
小结
两个最重要的统计量:
样本均值:
![](https://img.haomeiwen.com/i16811143/d3df546ece4b2cbd.png)
样本方差:
![](https://img.haomeiwen.com/i16811143/d2ababc81ed02817.png)
三个来自正态分布的抽样分布及其分位点:
![](https://img.haomeiwen.com/i16811143/83c09da71c529a9d.png)