缓存分布式架构zookeeper

Zab:Zookeeper 中的分布式一致性协议介绍

2016-08-20  本文已影响5435人  两棵橘树

背景

在分布式系统中实现一致性是件有挑战的事。经典的二阶段提交、三阶段提交都不能完美的解决这一问题,有关传统的的分布式系统一致性问题可以看这里Paxos 算法能完美地达到分布式系统的一致性,但由于较为复杂,在实际工程上不是很合适,Zab 协议借鉴了 Paxos 的思想,并进行了改进,以满足工程上的实际需求。

设计目标

协议内容

Zab 协议分为两大块:

由于之前讲的 Zab 协议的广播部分不能处理 leader 挂掉的情况,Zab 协议引入了恢复模式来处理这一问题。为了使 leader 挂了后系统能正常工作,需要解决以下两个问题:

已经被处理的消息不能丢

这一情况会出现在以下场景:当 leader 收到合法数量 follower 的 ACKs 后,就向各个 follower 广播 COMMIT 命令,同时也会在本地执行 COMMIT 并向连接的客户端返回「成功」。但是如果在各个 follower 在收到 COMMIT 命令前 leader 就挂了,导致剩下的服务器并没有执行都这条消息。

如图 1-1,消息 1 的 COMMIT 命令 Server1(leader)和 Server2(follower) 上执行了,但是 Server3 还没有收到消息 1 的 COMMIT 命令,此时 leader Server1 已经挂了,客户端很可能已经收到消息 1 已经成功执行的回复,经过恢复模式后需要保证所有机器都执行了消息 1。


图 1-1

为了实现已经被处理的消息不能丢这个目的,Zab 的恢复模式使用了以下的策略:

  1. 选举拥有 proposal 最大值(即 zxid 最大) 的节点作为新的 leader:由于所有提案被 COMMIT 之前必须有合法数量的 follower ACK,即必须有合法数量的服务器的事务日志上有该提案的 proposal,因此,只要有合法数量的节点正常工作,就必然有一个节点保存了所有被 COMMIT 消息的 proposal 状态。
  2. 新的 leader 将自己事务日志中 proposal 但未 COMMIT 的消息处理。
  3. 新的 leader 与 follower 建立先进先出的队列, 先将自身有而 follower 没有的 proposal 发送给 follower,再将这些 proposal 的 COMMIT 命令发送给 follower,以保证所有的 follower 都保存了所有的 proposal、所有的 follower 都处理了所有的消息。
    通过以上策略,能保证已经被处理的消息不会丢

被丢弃的消息不能再次出现

这一情况会出现在以下场景:当 leader 接收到消息请求生成 proposal 后就挂了,其他 follower 并没有收到此 proposal,因此经过恢复模式重新选了 leader 后,这条消息是被跳过的。 此时,之前挂了的 leader 重新启动并注册成了 follower,他保留了被跳过消息的 proposal 状态,与整个系统的状态是不一致的,需要将其删除。

如图 1-2 ,在 Server1 挂了后系统进入新的正常工作状态后,消息 3被跳过,此时 Server1 中的 P3 需要被清除。


图 1-2

Zab 通过巧妙的设计 zxid 来实现这一目的。一个 zxid 是64位,高 32 是纪元(epoch)编号,每经过一次 leader 选举产生一个新的 leader,新 leader 会将 epoch 号 +1。低 32 位是消息计数器,每接收到一条消息这个值 +1,新 leader 选举后这个值重置为 0。这样设计的好处是旧的 leader 挂了后重启,它不会被选举为 leader,因为此时它的 zxid 肯定小于当前的新 leader。当旧的 leader 作为 follower 接入新的 leader 后,新的 leader 会让它将所有的拥有旧的 epoch 号的未被 COMMIT 的 proposal 清除。

总结

个人认为 Zab 协议设计的优秀之处有两点,一是简化二阶段提交,提升了在正常工作情况下的性能;二是巧妙地利用率自增序列,简化了异常恢复的逻辑,也很好地保证了顺序处理这一特性。

上一篇下一篇

猜你喜欢

热点阅读