Stanford机器学习---第四讲. 神经网络的表示 Neur
原文http://blog.csdn.net/abcjennifer/article/details/7749309
本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning中Andrew老师的讲解。(https://class.coursera.org/ml/class/index)
第四讲——Neural Networks 神经网络的表示
===============================
(一)、为什么引入神经网络?——Nonlinear hypothesis
(二)、神经元与大脑(Neurons and Brain)
(三)、神经网络的表示形式
(四)、怎样用神经网络实现逻辑表达式?
(五)、分类问题(Classification)
本章主要围绕神经网络的建模及其线性表示(即neural networks的representation)做以初步了解,在下一章中将会有更详细的神经网络如何学习方面的知识。
===============================
(一)、为什么引入神经网络?——Nonlinear hypothesis
之前我们讨论的ML问题中,主要针对Regression做了分析,其中采用梯度下降法进行参数更新。然而其可行性基于假设参数不多,如果参数多起来了怎么办呢?比如下图中这个例子:从100*100个pixels中选出所有XiXj作为logistic regression的一个参数,那么总共就有5*10^7个feature,即x有这么多维。
所以引入了Nonlinear hypothesis,应对高维数据和非线性的hypothesis(如下图所示):
===============================
(二)、神经元与大脑(neurons and brain)
神经元工作模式:
神经网络的逻辑单元:输入向量x(input layer),中间层a(2,i)(hidden layer), 输出层h(x)(output layer)。
其中,中间层的a(2,i)中的2表示第二个级别(第一个级别是输入层),i表示中间层的第几个元素。或者可以说,a(j,i) is the activation of unit i in layer j.
===============================
(三)、神经网络的表示形式
从图中可知,中间层a(2,j)是输入层线性组合的sigmod值,输出又是中间层线性组合的sigmod值。
下面我们进行神经网络参数计算的向量化:
令z(2)表示中间层,x表示输入层,则有
,
z(2)=Θ(1)x
a(2)=g(z(2))
或者可以将x表示成a(1),那么对于输入层a(1)有[x0~x3]4个元素,中间层a(2)有[a(2)0~a(2)3]4个元素(其中令a(2)0=1),则有
h(x)= a(3)=g(z(3))
z(3)=Θ(2)a(2)
通过以上这种神经元的传递方式(input->activation->output)来计算h(x), 叫做Forward propagation, 向前传递。
这里我们可以发现,其实神经网络就像是logistic regression,只不过我们把logistic regression中的输入向量[x1~x3]变成了中间层的[a(2)1~a(2)3], 即
h(x)=g(Θ(2)0a(2)0+Θ(2)1a(2)1+Θ(2)2a(2)2+Θ(2)3a(2)3)
而中间层又由真正的输入向量通过Θ(1)学习而来,这里呢,就解放了输入层,换言之输入层可以是original input data的任何线性组合甚至是多项式组合如set x1*x2 as original x1...另外呢,具体怎样利用中间层进行更新下面会更详细地讲;此外,还有一些其他模型,比如:
===============================
(四)、怎样用神经网络实现逻辑表达式?
神经网路中,单层神经元(无中间层)的计算可用来表示逻辑运算,比如逻辑AND、逻辑或OR
举例说明:逻辑与AND;下图中左半部分是神经网络的设计与output层表达式,右边上部分是sigmod函数,下半部分是真值表。
给定神经网络的权值就可以根据真值表判断该函数的作用。再给出一个逻辑或的例子,如下图所示:
以上两个例子只是单层传递,下面我们再给出一个更复杂的例子,用来实现逻辑表达< x1 XNOR x2 >, 即逻辑同或关系,它由前面几个例子共同实现:
将AND、NOT AND和 OR分别放在下图中输入层和输出层的位置,即可得到x1 XNOR x2,道理显而易见:
a21= x1 && x2
a22= (﹁x1)&&(﹁x2)
a31=a21||a21=(x1 && x2) || (﹁x1)&&(﹁x2) = x1 XNOR x2;
应用:手写识别系统
===============================
(五)、分类问题(Classification)
记得上一章中我们讲过的one-vs-all分类问题么?one-vs-all方法是把二类分类问题到多类分类的一个推广,在这里,我们就讲述如何用神经网络进行分类。网络设计如下图所示:
输入向量x有三个维度,两个中间层,输出层4个神经元分别用来表示4类,也就是每一个数据在输出层都会出现[a b c d]T,且a,b,c,d中仅有一个为1,表示当前类。
===============================
小结
本章引入了ML中神经网络的概念,主要讲述了如何利用神经网络的construction及如何进行逻辑表达function的构造,在下一章中我们将针对神经网络的学习过程进行更详细的讲述。