20190711工作进展
-
得到了title表和叶子类目的对应关系
hs_leaf_class_for_title
确认有些title表中的项目在原始数据表中找不到对应项目,大概每个表有1000条找不到 -
取得商品的item_id
select coalesce(get_json_object(body, '.entities.k1.item_id/l')) as item_id, title, id from hs_jingyan_query_related_video_pool_2_3 limit 100; -
按照item_id取得叶子类目
create table hs_leaf_class_for_title_3 as select item_id, title, cate_id, cate_name, cate_level, commodity_id, commodity_name from tbcdm.dim_tb_itm where ds=max_pt('tbcdm.dim_tb_itm') and item_id in(select coalesce(get_json_object(body, '.entities.k1.item_id/l')) from hs_jingyan_query_related_video_pool_3_3);
select count(*) from as select coalesce(get_json_object(body, '.entities.k1.item_id/l')) from hs_jingyan_query_related_video_pool_3_3;
create table hs_tmp_1 as select coalesce(get_json_object(body, '.entities.k1.item_id/l')) as item_id, id from hs_jingyan_query_related_video_pool_3_3;
- 得到query对应的商品id列表
create table hs_tmp_0 as select se_keyword, item_list from graph_embedding.jl_jingyan_query_related_top_query_detailed;
create table hs_tmp_1 as select b.id, b.query, a.item_list from (select se_keyword, item_list from hs_tmp_0)a left join (select id, query from hs_jingyan_query_related_top_query_1)b on a.se_keyword == b.query;
create table hs_tmp_4 as select a.id, b.query, a.item_id from
(select id, item_id from hs_tmp_3)a left join (select query, id from hs_jingyan_query_related_top_query_1)b on a.id == b.id;
create table hs_leaf_class_for_query as select item_id, title, cate_id, cate_name, cate_level, commodity_id, commodity_name from tbcdm.dim_tb_itm where ds=max_pt('tbcdm.dim_tb_itm') and item_id in(select coalesce(get_json_object(body, '.entities.k1.item_id/l')) from hs_jingyan_query_related_video_pool_3_3);
select se_keywork, item_list from graph_embedding.jl_jingyan_query_related_top_query_detailed where se_keyword is NULL limit 100;
- 得到的query中能与原始query对应上的只有9150条数据,也就是说有850个query没有对应的叶子类目
hs_leaf_class_for_query_0
create table hs_tmp_7 as select b.id, b.query, b.item_id, a.title, a.cate_id, a.cate_name, a.cate_level, a.commodity_id, a.commodity_name from (select item_id, title, cate_id, cate_name, cate_level, commodity_id, commodity_name from hs_tmp_6 where item_id in(select item_id from hs_tmp_5))a left join (select id, query, item_id from hs_tmp_5)b on a.item_id == b.item_id;
- 过滤
hs_result_title_query_1w_2, hs_leaf_class_for_query_0 -> hs_result_title_query_1w_filtered
pai -name pytorch -project algo_public_dev -Dpython=3.6 -Dscript="file:///apsarapangu/disk1/hengsong.lhs/origin_deep_cluster_odps_5.tar.gz" -DentryFile="test_query_with_title.py" -Dtables="odps://graph_embedding/tables/hs_result_title_query_1w_2,odps://graph_embedding/tables/hs_leaf_class_for_query_0" -Doutputs="odps://graph_embedding/tables/hs_result_title_query_1w_filtered_tmp" -Dbucket="oss://bucket-automl/" -Darn="acs:ram::1293303983251548:role/graph2018" -Dhost="cn-hangzhou.oss-internal.aliyun-inc.com" -DuserDefinedParameters="" -DworkerCount=1;
create table hs_result_title_query_1w_filtered_1 as
select a.* from
(select * from hs_result_title_query_1w_2)a right join
(select * from hs_result_title_query_1w_filtered)b on a.index == b.index and b.item_id == b.item_id;
- 除去叶子类目中找不到的结果
create table hs_result_title_query_1w_2 as
select a.index, a.origin_query, a.query, a.title_id, a.title, b.item_id, a.score, b.cate_id, b.cate_name, a.url from
(select * from hs_result_title_query_1w_1 where title in (select title from hs_leaf_class_for_title_2))a join (select * from hs_leaf_class_for_title_2)b on a.title == b.title;
- 处理url
select index, origin_query, query, title_id, title, item_id, score, cate_id, cate_name, url when url is not "\N" then CONCAT("http://cloud.video.taobao.com", url) from hs_result_title_query_1w_filtered_2 limit 10;
select index as qid, origin_query as query , title as video_titile,
case when url_k2 != "\N" then CONCAT("http://cloud.video.taobao.com", url_k2)
ELSE CONCAT("http:", url_k3)
select index as qid, origin_query as query , title as video_titile,
CONCAT("http://cloud.video.taobao.com", url) from hs_result_title_query_1w_filtered_2 limit 10;
- 使用top1000来取title
(0) 得到query_title对应表
create table if not exists graph_embedding.hs_heter_graph_embedding_out_nearest_neighbor_007(
node_id bigint,
emb string
) LIFECYCLE 14;
hs_heter_graph_embedding_out_nearest_neighbor_007
PAI -name am_vsearch_nearest_neighbor_014 -project algo_market
-Dcluster="{"worker":{"count":1,"gpu":100}}"
-Ddim=100
-Did_col="node_id"
-Dvector_col="emb"
-Dinput_slice=1
-Dtopk=1000
-Dnprob=1024
-Dmetric="l2"
-Dinput="odps://graph_embedding/tables/hs_heter_graph_embedding_video_recall_"
-Dquery="odps://graph_embedding/tables/hs_heter_graph_embedding_ave_info_"
-Doutputs="odps://graph_embedding/tables/hs_heter_graph_embedding_out_nearest_neighbor_007"
-DenableDynamicCluster=true -DmaxTrainingTimeInHour=60;
1000 result : hs_heter_graph_embedding_out_nearest_neighbor_007
(1) 分割result
create table hs_tmp_10 as select bi_udf:bi_split_value(node_id, emb, " ") as (query_id, title_id) from hs_heter_graph_embedding_out_nearest_neighbor_007;
create table hs_tmp_11 as select graph_embedding:hs_split(query_id, title_id, ":") as (query_id, title_id, score) from hs_tmp_10;
加title:
create table hs_tmp_12 as
select a.query_id, a.title_id, b.title, a.score from
(select * from hs_tmp_11)a join
(select title, id from hs_jingyan_query_related_video_pool_2_3)b
on a.title_id == b.id;
(2) 除去叶子类目中找不到的结果,顺便加上叶子类目信息
create table hs_tmp_13 as
select a.query_id as index, a.title_id, a.title, b.item_id, a.score, b.cate_id, b.cate_name from
(select * from hs_tmp_12 where title in (select title from hs_leaf_class_for_title_2))a join (select * from hs_leaf_class_for_title_2)b on a.title == b.title;
(3)过滤
pai -name pytorch -project algo_public_dev -Dpython=3.6 -Dscript="file:///apsarapangu/disk1/hengsong.lhs/origin_deep_cluster_odps_5.tar.gz" -DentryFile="test_query_with_title.py" -Dtables="odps://graph_embedding/tables/hs_tmp_13,odps://graph_embedding/tables/hs_leaf_class_for_query_0" -Doutputs="odps://graph_embedding/tables/hs_tmp_14" -Dbucket="oss://bucket-automl/" -Darn="acs:ram::1293303983251548:role/graph2018" -Dhost="cn-hangzhou.oss-internal.aliyun-inc.com" -DuserDefinedParameters="" -DworkerCount=1;
- 构造UDTF
http://help.aliyun-inc.com/internaldoc/detail/27811.html?spm=a2c1f.8259796.3.8.733f96d5LV8C1z
/apsarapangu/disk1/hengsong.lhs/deep_cluster_odps/IDEC-pytorch/hs_udf.py
CREATE FUNCTION hs_split AS hs_udf.Processor USING hs_udf.py;
select graph_embedding:hs_split(query, title_id, ":") as (query_id, title_id, score) from hs_heter_graph_embedding_out_nearest_neighbor_007 limit 100;