linux系统下poll和epoll内核源代码剖析
poll和epoll的使用应该不用再多说了。当fd很多时,使用epoll比poll效率更高。我们通过内核源码分析来看看到底是为什么。
poll剖析poll系统调用:
intpoll(struct pollfd *fds,nfds_tnfds,inttimeout);
对应的实现代码为:
[fs/select.c -->sys_poll]
asmlinkagelongsys_poll(struct pollfd __user * ufds,unsignedintnfds,longtimeout)
{
structpoll_wqueuestable;
intfdcount, err;
unsignedinti;
structpoll_list*head;
structpoll_list*walk;
/* Do a sanity check on nfds ... *//* 用户给的nfds数不可以超过一个struct file结构支持
的最大fd数(默认是256)*/
if(nfds > current->files->max_fdset && nfds > OPEN_MAX)
return-EINVAL;
if(timeout) {
/* Careful about overflow in the intermediate values */
if((unsignedlong) timeout < MAX_SCHEDULE_TIMEOUT / HZ)
timeout = (unsignedlong)(timeout*HZ+999)/1000+1;
else/* Negative or overflow */
timeout = MAX_SCHEDULE_TIMEOUT;
}
poll_initwait(&table);
其中poll_initwait较为关键,从字面上看,应该是初始化变量table,注意此处table在整个执行poll的过程中是很关键的变量。而struct poll_table其实就只包含了一个函数指针:
[fs/poll.h]
/*
* structures and helpers for f_op->poll implementations
*/
typedefvoid(*poll_queue_proc)(struct file *,wait_queue_head_t*, struct
poll_table_struct *);
typedefstructpoll_table_struct{
poll_queue_proc qproc;
}
poll_table;
现在我们来看看poll_initwait到底在做些什么
[fs/select.c]
void __pollwait(structfile*filp, wait_queue_head_t *wait_address, poll_table *p);
void poll_initwait(structpoll_wqueues*pwq)
{
&(pwq->pt)->qproc = __pollwait;/*此行已经被我“翻译”了,方便观看*/
pwq->error =0;
pwq->table = NULL;
}
需要C/C++ Linux服务器架构师学习资料私信“资料”(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享
很明显,poll_initwait的主要动作就是把table变量的成员poll_table对应的回调函数置__pollwait。这个__pollwait不仅是poll系统调用需要,select系统调用也一样是用这个__pollwait,说白了,这是个操作系统的异步操作的“御用”回调函数。当然了,epoll没有用这个,它另外新增了一个回调函数,以达到其高效运转的目的,这是后话,暂且不表。我们先不讨论__pollwait的具体实现,还是继续看sys_poll:
[fs/select.c -->sys_poll]
head = NULL;
walk = NULL;
i = nfds;
err = -ENOMEM;
while(i!=0) {
structpoll_list*pp;
pp = kmalloc(sizeof(structpoll_list)+
sizeof(structpollfd)*
(i>POLLFD_PER_PAGE?POLLFD_PER_PAGE:i),
GFP_KERNEL);
if(pp==NULL)
goto out_fds;
pp->next=NULL;
pp->len = (i>POLLFD_PER_PAGE?POLLFD_PER_PAGE:i);
if(head == NULL)
head = pp;
else
walk->next = pp;
walk = pp;
if(copy_from_user(pp->entries, ufds + nfds-i,
sizeof(structpollfd)*pp->len)) {
err = -EFAULT;
goto out_fds;
}
i -= pp->len;
}
fdcount = do_poll(nfds, head, &table, timeout);
这一大堆代码就是建立一个链表,每个链表的节点是一个page大小(通常是4k),这链表节点由一个指向struct poll_list的指针掌控,而众多的struct pollfd就通过struct_list的entries成员访问。上面的循环就是把用户态的struct pollfd拷进这些entries里。通常用户程序的poll调用就监控几个fd,所以上面这个链表通常也就只需要一个节点,即操作系统的一页。但是,当用户传入的fd很多时,由于poll系统调用每次都要把所有struct pollfd拷进内核,所以参数传递和页分配此时就成了poll系统调用的性能瓶颈。最后一句do_poll,我们跟进去:
[fs/select.c-->sys_poll()-->do_poll()]
staticvoiddo_pollfd(unsignedintnum, struct pollfd * fdpage,
poll_table ** pwait,int*count)
{
inti;
for(i =0; i < num; i++) {
intfd;
unsignedintmask;
structpollfd*fdp;
mask =0;
fdp = fdpage+i;
fd = fdp->fd;
if(fd >=0) {
structfile*file=fget(fd);
mask = POLLNVAL;
if(file !=NULL) {
mask = DEFAULT_POLLMASK;
if(file->f_op && file->f_op->poll)
mask = file->f_op->poll(file, *pwait);
mask &= fdp->events | POLLERR | POLLHUP;
fput(file);
}
if(mask) {
*pwait =NULL;
(*count)++;
}
}
fdp->revents = mask;
}
}
staticintdo_poll(unsignedintnfds, struct poll_list *list,
struct poll_wqueues *wait,longtimeout)
{
intcount =0;
poll_table* pt = &wait->pt;
if(!timeout)
pt =NULL;
for(;;) {
structpoll_list*walk;
set_current_state(TASK_INTERRUPTIBLE);
walk =list;
while(walk !=NULL) {
do_pollfd( walk->len, walk->entries, &pt, &count);
walk = walk->next;
}
pt =NULL;
if(count || !timeout || signal_pending(current))
break;
count = wait->error;
if(count)
break;
timeout = schedule_timeout(timeout);/* 让current挂起,别的进程跑,timeout到了
以后再回来运行current*/
}
__set_current_state(TASK_RUNNING);
returncount;
}
注意set_current_state和signal_pending,它们两句保障了当用户程序在调用poll后挂起时,发信号可以让程序迅速推出poll调用,而通常的系统调用是不会被信号打断的。
纵览do_poll函数,主要是在循环内等待,直到count大于0才跳出循环,而count主要是靠do_pollfd函数处理。注意这段代码:
while(walk !=NULL) {
do_pollfd( walk->len, walk->entries, &pt, &count);
walk = walk->next;
}
当用户传入的fd很多时(比如1000个),对do_pollfd就会调用很多次,poll效率瓶颈的另一原因就在这里。do_pollfd就是针对每个传进来的fd,调用它们各自对应的poll函数,简化一下调用过程,如下:
structfile* file = fget(fd);
file->f_op->poll(file, &(table->pt));
如果fd对应的是某个socket,do_pollfd调用的就是网络设备驱动实现的poll;如果fd对应的是某个ext3文件系统上的一个打开文件,那do_pollfd调用的就是ext3文件系统驱动实现的poll。一句话,这个file->f_op->poll是设备驱动程序实现的,那设备驱动程序的poll实现通常又是什么样子呢?其实,设备驱动程序的标准实现是:调用poll_wait,即以设备自己的等待队列为参数(通常设备都有自己的等待队列,不然一个不支持异步操作的设备会让人很郁闷)调用struct poll_table的回调函数。作为驱动程序的代表,我们看看socket在使用tcp时的代码:
[net/ipv4/tcp.c-->tcp_poll]
unsigned int tcp_poll(structfile*file,structsocket*sock, poll_table *wait)
{
unsigned int mask;
structsock*sk = sock->sk;
structtcp_opt*tp = tcp_sk(sk);
poll_wait(file, sk->sk_sleep, wait);
代码就看这些,剩下的无非就是判断状态、返回状态值,tcp_poll的核心实现就是poll_wait,而
poll_wait就是调用struct poll_table对应的回调函数,那poll系统调用对应的回调函数就是__poll_wait,所以这里几乎就可以把tcp_poll理解为一个语句:
__poll_wait(file, sk->sk_sleep,wait);
由此也可以看出,每个socket自己都带有一个等待队列sk_sleep,所以上面我们所说的“设备的等待队列”其实不止一个。这时候我们再看看__poll_wait的实现:
[fs/select.c-->__poll_wait()]
void __pollwait(structfile*filp, wait_queue_head_t *wait_address, poll_table *_p)
{
structpoll_wqueues*p = container_of(_p,structpoll_wqueues, pt);
structpoll_table_page*table = p->table;
if(!table || POLL_TABLE_FULL(table)) {
structpoll_table_page*new_table;
new_table = (structpoll_table_page*) __get_free_page(GFP_KERNEL);
if(!new_table) {
p->error = -ENOMEM;
__set_current_state(TASK_RUNNING);
return;
}
new_table->entry = new_table->entries;
new_table->next = table;
p->table = new_table;
table = new_table;
}
/* Add a new entry */
{
structpoll_table_entry* entry = table->entry;
table->entry = entry+1;
get_file(filp);
entry->filp = filp;
entry->wait_address = wait_address;
init_waitqueue_entry(&entry->wait, current);
add_wait_queue(wait_address,&entry->wait);
}
}
__poll_wait的作用就是创建了上图所示的数据结构(一次__poll_wait即一次设备poll调用只创建一个poll_table_entry),并通过struct poll_table_entry的wait成员,把current挂在了设备的等待队列
上,此处的等待队列是wait_address,对应tcp_poll里的sk->sk_sleep。现在我们可以回顾一下poll系统调用的原理了:先注册回调函数__poll_wait,再初始化table变量(类型为struct poll_wqueues),接着拷贝用户传入的struct pollfd(其实主要是fd),然后轮流调用所有fd对应的poll(把current挂到各个fd对应的设备等待队列上)。在设备收到一条消息(网络设备)或填写完文件数据(磁盘设备)后,会唤醒设备等待队列上的进程,这时current便被唤醒了。current醒来后离开sys_poll的操作相对简单,这里就不逐行分析了。
epoll
通过上面的分析,poll运行效率的两个瓶颈已经找出,现在的问题是怎么改进。首先,每次poll都要把1000个fd 拷入内核,太不科学了,内核干嘛不自己保存已经拷入的fd呢?答对了,epoll就是自己保存拷入的fd,它的API就已经说明了这一点——不是 epoll_wait的时候才传入fd,而是通过epoll_ctl把所有fd传入内核再一起"wait",这就省掉了不必要的重复拷贝。其次,在 epoll_wait时,也不是把current轮流的加入fd对应的设备等待队列,而是在设备等待队列醒来时调用一个回调函数(当然,这就需要“唤醒回调”机制),把产生事件的fd归入一个链表,然后返回这个链表上的fd。
epoll剖析
epoll是个module,所以先看看module的入口eventpoll_init
[fs/eventpoll.c-->evetpoll_init()]
staticint__init eventpoll_init(void)
{
interror;
init_MUTEX(&epsem);
/* Initialize the structure used to perform safe poll wait head wake ups */
ep_poll_safewake_init(&psw);
/* Allocates slab cache used to allocate "struct epitem" items */
epi_cache = kmem_cache_create("eventpoll_epi",sizeof(structepitem),
0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC,
NULL,NULL);
/* Allocates slab cache used to allocate "struct eppoll_entry" */
pwq_cache = kmem_cache_create("eventpoll_pwq",
sizeof(structeppoll_entry),0,
EPI_SLAB_DEBUG|SLAB_PANIC,NULL,NULL);
/*
* Register the virtual file system that will be the source of inodes
* for the eventpoll files
*/
error = register_filesystem(&eventpoll_fs_type);
if(error)
gotoepanic;
/* Mount the above commented virtual file system */
eventpoll_mnt = kern_mount(&eventpoll_fs_type);
error = PTR_ERR(eventpoll_mnt);
if(IS_ERR(eventpoll_mnt))
gotoepanic;
DNPRINTK(3, (KERN_INFO"[%p] eventpoll: successfully initialized.\n",
current));
return0;
epanic:
panic("eventpoll_init() failed\n");
}
很有趣,这个module在初始化时注册了一个新的文件系统,叫"eventpollfs"(在eventpoll_fs_type结构里),然后挂载此文件系统。另外创建两个内核cache(在内核编程中,如果需要频繁分配小块内存,应该创建kmem_cahe来做“内存池”),分别用于存放struct epitem和eppoll_entry。如果以后要开发新的文件系统,可以参考这段代码。现在想想epoll_create为什么会返回一个新的fd?因为它就是在这个叫做"eventpollfs"的文件系统里创建了一个新文件!如下:
[fs/eventpoll.c-->sys_epoll_create()]
asmlinkagelongsys_epoll_create(intsize)
{
interror, fd;
structinode*inode;
structfile*file;
DNPRINTK(3, (KERN_INFO"[%p] eventpoll: sys_epoll_create(%d)\n",
current, size));
/* Sanity check on the size parameter */
error = -EINVAL;
if(size <=0)
gotoeexit_1;
/*
* Creates all the items needed to setup an eventpoll file. That is,
* a file structure, and inode and a free file descriptor.
*/
error = ep_getfd(&fd, &inode, &file);
if(error)
gotoeexit_1;
/* Setup the file internal data structure ( "struct eventpoll" ) */
error = ep_file_init(file);
if(error)
gotoeexit_2;
函数很简单,其中ep_getfd看上去是“get”,其实在第一次调用epoll_create时,它是要创建新inode、新的file、新的fd。而ep_file_init则要创建一个struct eventpoll结构,并把它放入file-
>private_data,注意,这个private_data后面还要用到的。看到这里,也许有人要问了,为什么epoll的开发者不做一个内核的超级大map把用户要创建的epoll句柄存起来,在epoll_create时返回一个指针?那似乎很直观呀。但是,仔细看看,linux的系统调用有多少是返回指针的?你会发现几乎没有!(特此强调,malloc不是系统调用,malloc调用的brk才是)因为linux做为unix的最杰出的继承人,它遵循了unix的一个巨大优点——一切皆文件,输入输出是文件、socket也
是文件,一切皆文件意味着使用这个操作系统的程序可以非常简单,因为一切都是文件操作而已!(unix还不是完全做到,plan 9才算)。而且使用文件系统有个好处:epoll_create返回的是一个fd,而不是该死的指针,指针如果指错了,你简直没办法判断,而fd则可以通过current->files->fd_array[]找到其真伪。epoll_create好了,该epoll_ctl了,我们略去判断性的代码:
[fs/eventpoll.c-->sys_epoll_ctl()]
asmlinkagelong
sys_epoll_ctl(intepfd,intop,intfd, struct epoll_event __user *event)
{
interror;
structfile*file, *tfile;
structeventpoll*ep;
structepitem*epi;
structepoll_eventepds;
....
epi = ep_find(ep, tfile, fd);
error = -EINVAL;
switch(op) {
caseEPOLL_CTL_ADD:
if(!epi) {
epds.events |= POLLERR | POLLHUP;
error = ep_insert(ep, &epds, tfile, fd);
}else
error = -EEXIST;
break;
caseEPOLL_CTL_DEL:
if(epi)
error = ep_remove(ep, epi);
else
error = -ENOENT;
break;
caseEPOLL_CTL_MOD:
if(epi) {
epds.events |= POLLERR | POLLHUP;
error = ep_modify(ep, epi, &epds);
} else
error = -ENOENT;
break;
}
原来就是在一个大的结构(现在先不管是什么大结构)里先ep_find,如果找到了struct epitem而用户操作是ADD,那么返回-EEXIST;如果是DEL,则ep_remove。如果找不到struct epitem而用户操作是ADD,就ep_insert创建并插入一个。很直白。那这个“大结构”是什么呢?看ep_find的调用方式,ep参数应该是指向这个“大结构”的指针,再看ep = file->private_data,我们才明白,原来这个“大结构”就是那个在epoll_create时创建的struct eventpoll,具体再看看ep_find的实现,发现原来是struct eventpoll的rbr成员(struct rb_root),原来这是一个红黑树的根!而红黑树上挂的都是struct epitem。现在清楚了,一个新创建的epoll文件带有一个struct eventpoll结构,这个结构上再挂一个红黑树,而这个红黑树就是每次epoll_ctl时fd存放的地方!现在数据结构都已经清楚了,我们来看最核心的:
[fs/eventpoll.c-->sys_epoll_wait()]
asmlinkagelongsys_epoll_wait(intepfd, struct epoll_event __user *events,
intmaxevents,inttimeout)
{
interror;
structfile*file;
structeventpoll*ep;
DNPRINTK(3, (KERN_INFO"[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n",
current, epfd, events, maxevents, timeout));
/* The maximum number of event must be greater than zero */
if(maxevents <=0)
return-EINVAL;
/* Verify that the area passed by the user is writeable */
if((error = verify_area(VERIFY_WRITE, events, maxevents *sizeof(struct
epoll_event))))
gotoeexit_1;
/* Get the "struct file *" for the eventpoll file */
error = -EBADF;
file = fget(epfd);
if(!file)
gotoeexit_1;
/*
* We have to check that the file structure underneath the fd
* the user passed to us _is_ an eventpoll file.
*/
error = -EINVAL;
if(!IS_FILE_EPOLL(file))
gotoeexit_2;
/*
* At this point it is safe to assume that the "private_data" contains
* our own data structure.
*/
ep = file->private_data;
/* Time to fish for events ... */
error = ep_poll(ep, events, maxevents, timeout);
eexit_2:
fput(file);
eexit_1:
DNPRINTK(3, (KERN_INFO"[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) =
%d\n",
current, epfd, events, maxevents, timeout, error));
returnerror;
}
故伎重演,从file->private_data中拿到struct eventpoll,再调用ep_poll
[fs/eventpoll.c-->sys_epoll_wait()->ep_poll()]
staticintep_poll(structeventpoll *ep,structepoll_event __user *events,
intmaxevents,longtimeout)
{
intres, eavail;
unsignedlongflags;
longjtimeout;
wait_queue_t wait;
/*
* Calculate the timeout by checking for the "infinite" value ( -1 )
* and the overflow condition. The passed timeout is in milliseconds,
* that why (t * HZ) / 1000.
*/
jtimeout = timeout ==-1|| timeout > (MAX_SCHEDULE_TIMEOUT -1000) / HZ ?
MAX_SCHEDULE_TIMEOUT: (timeout * HZ +999) /1000;
retry:
write_lock_irqsave(&ep->lock, flags);
res =0;
if(list_empty(&ep->rdllist)) {
/*
* We don't have any available event to return to the caller.
* We need to sleep here, and we will be wake up by
* ep_poll_callback() when events will become available.
*/
init_waitqueue_entry(&wait, current);
add_wait_queue(&ep->wq, &wait);
for(;;) {
/*
* We don't want to sleep if the ep_poll_callback() sends us
* a wakeup in between. That's why we set the task state
* to TASK_INTERRUPTIBLE before doing the checks.
*/
set_current_state(TASK_INTERRUPTIBLE);
if(!list_empty(&ep->rdllist) || !jtimeout)
break;
if(signal_pending(current)) {
res = -EINTR;
break;
}
write_unlock_irqrestore(&ep->lock, flags);
jtimeout = schedule_timeout(jtimeout);
write_lock_irqsave(&ep->lock, flags);
}
remove_wait_queue(&ep->wq, &wait);
set_current_state(TASK_RUNNING);
}
又是一个大循环,不过这个大循环比poll的那个好,因为仔细一看——它居然除了睡觉和判断ep->rdllist是否为空以外,啥也没做!什么也没做当然效率高了,但到底是谁来让ep->rdllist不为空呢?答案是ep_insert时设下的回调函数
[fs/eventpoll.c-->sys_epoll_ctl()-->ep_insert()]
staticint ep_insert(structeventpoll*ep,structepoll_event*event,
structfile*tfile, int fd)
{
int error, revents, pwake =0;
unsigned long flags;
structepitem*epi;
structep_pqueueepq;
error = -ENOMEM;
if(!(epi = EPI_MEM_ALLOC()))
goto eexit_1;
/* Item initialization follow here ... */
EP_RB_INITNODE(&epi->rbn);
INIT_LIST_HEAD(&epi->rdllink);
INIT_LIST_HEAD(&epi->fllink);
INIT_LIST_HEAD(&epi->txlink);
INIT_LIST_HEAD(&epi->pwqlist);
epi->ep = ep;
EP_SET_FFD(&epi->ffd, tfile, fd);
epi->event = *event;
atomic_set(&epi->usecnt,1);
epi->nwait =0;
/* Initialize the poll table using the queue callback */
epq.epi = epi;
init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
/*
* Attach the item to the poll hooks and get current event bits.
* We can safely use the file* here because its usage count has
* been increased by the caller of this function.
*/
revents = tfile->f_op->poll(tfile, &epq.pt);
我们注意init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);这一行,其实就是&(epq.pt)->qproc = ep_ptable_queue_proc;紧接着 tfile->f_op->poll(tfile, &epq.pt)其实就是调用被监控文件(epoll里叫“target file”)的poll方法,而这个poll其实就是调用poll_wait(还记得poll_wait吗?每个支持poll的设备驱动程序都要调用的),最后就是调用ep_ptable_queue_proc。这是比较难解的一个调用关系,因为不是语言级的直接调用。ep_insert还把struct epitem放到struct file里的f_ep_links连表里,以方便查找,struct epitem里的fllink就是担负这个使命的。
[fs/eventpoll.c-->ep_ptable_queue_proc()]
staticvoid ep_ptable_queue_proc(structfile*file, wait_queue_head_t *whead,
poll_table *pt)
{
structepitem*epi = EP_ITEM_FROM_EPQUEUE(pt);
structeppoll_entry*pwq;
if(epi->nwait >=0&& (pwq = PWQ_MEM_ALLOC())) {
init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
pwq->whead = whead;
pwq->base = epi;
add_wait_queue(whead, &pwq->wait);
list_add_tail(&pwq->llink, &epi->pwqlist);
epi->nwait++;
}else{
/* We have to signal that an error occurred */
epi->nwait = -1;
}
}
上面的代码就是ep_insert中要做的最重要的事:创建struct eppoll_entry,设置其唤醒回调函数为
ep_poll_callback,然后加入设备等待队列(注意这里的whead就是上一章所说的每个设备驱动都要带的等待队列)。只有这样,当设备就绪,唤醒等待队列上的等待着时,ep_poll_callback就会被调用。每次调用poll系统调用,操作系统都要把current(当前进程)挂到fd对应的所有设备的等待队列上,可以想象,fd多到上千的时候,这样“挂”法很费事;而每次调用epoll_wait则没有这么罗嗦,epoll只在epoll_ctl时把current挂一遍(这第一遍是免不了的)并给每个fd一个命令“好了就调回调函数”,如果设备有事件了,通过回调函数,会把fd放入rdllist,而每次调用epoll_wait就只是收集rdllist里的fd就可以了——epoll巧妙的利用回调函数,实现了更高效的事件驱动模型。现在我们猜也能猜出来ep_poll_callback会干什么了——肯定是把红黑树上的收到event的epitem(代表每个fd)插入ep->rdllist中,这样,当epoll_wait返回时,rdllist里就都是就绪的fd了!
[fs/eventpoll.c-->ep_poll_callback()]
staticint ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
int pwake =0;
unsigned long flags;
structepitem*epi = EP_ITEM_FROM_WAIT(wait);
structeventpoll*ep = epi->ep;
DNPRINTK(3, (KERN_INFO"[%p] eventpoll: poll_callback(%p) epi=%p
ep=%p\n",
current, epi->file, epi, ep));
write_lock_irqsave(&ep->lock, flags);
/*
* If the event mask does not contain any poll(2) event, we consider the
* descriptor to be disabled. This condition is likely the effect of the
* EPOLLONESHOT bit that disables the descriptor when an event is received,
* until the next EPOLL_CTL_MOD will be issued.
*/
if(!(epi->event.events & ~EP_PRIVATE_BITS))
goto is_disabled;
/* If this file is already in the ready list we exit soon */
if(EP_IS_LINKED(&epi->rdllink))
goto is_linked;
list_add_tail(&epi->rdllink, &ep->rdllist);
is_linked:
/*
* Wake up ( if active ) both the eventpoll wait list and the ->poll()
* wait list.
*/
if(waitqueue_active(&ep->wq))
wake_up(&ep->wq);
if(waitqueue_active(&ep->poll_wait))
pwake++;
is_disabled:
write_unlock_irqrestore(&ep->lock, flags);
/* We have to call this outside the lock */
if(pwake)
ep_poll_safewake(&psw, &ep->poll_wait);
return1;
}
真正重要的只有 list_add_tail(&epi->rdllink, &ep->rdllist);一句,就是把struct epitem放到struct eventpoll的rdllist中去。现在我们可以画出epoll的核心数据结构图了:
epoll独有的EPOLLET
EPOLLET是epoll系统调用独有的flag,ET就是Edge Trigger(边缘触发)的意思,具体含义和应用大家可google之。有了EPOLLET,重复的事件就不会总是出来打扰程序的判断,故而常被使用。那EPOLLET的原理是什么呢?epoll把fd都挂上一个回调函数,当fd对应的设备有消息时,就把fd放入rdllist链表,这样epoll_wait只要检查这个rdllist链表就可以知道哪些fd有事件了。我们看看ep_poll的最后几行代码:
[fs/eventpoll.c->ep_poll()]
/*
* Try to transfer events to user space. In case we get 0 events and
* there's still timeout left over, we go trying again in search of
* more luck.
*/
if(!res && eavail &&
!(res = ep_events_transfer(ep, events, maxevents)) && jtimeout)
gotoretry;
returnres;
}
把rdllist里的fd拷到用户空间,这个任务是ep_events_transfer做的:
[fs/eventpoll.c->ep_events_transfer()]
staticint ep_events_transfer(structeventpoll*ep,
structepoll_event__user *events, int maxevents)
{
int eventcnt =0;
structlist_headtxlist;
INIT_LIST_HEAD(&txlist);
/*
* We need to lock this because we could be hit by
* eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL).
*/
down_read(&ep->sem);
/* Collect/extract ready items */
if(ep_collect_ready_items(ep, &txlist, maxevents) >0) {
/* Build result set in userspace */
eventcnt = ep_send_events(ep, &txlist, events);
/* Reinject ready items into the ready list */
ep_reinject_items(ep, &txlist);
}
up_read(&ep->sem);
returneventcnt;
}
代码很少,其中ep_collect_ready_items把rdllist里的fd挪到txlist里(挪完后rdllist就空了),接着
ep_send_events把txlist里的fd拷给用户空间,然后ep_reinject_items把一部分fd从txlist里“返还”给
rdllist以便下次还能从rdllist里发现它。其中ep_send_events的实现:
[fs/eventpoll.c->ep_send_events()]
staticint ep_send_events(structeventpoll*ep,structlist_head*txlist,
structepoll_event__user *events)
{
int eventcnt =0;
unsigned int revents;
structlist_head*lnk;
structepitem*epi;
/*
* We can loop without lock because this is a task private list.
* The test done during the collection loop will guarantee us that
* another task will not try to collect this file. Also, items
* cannot vanish during the loop because we are holding "sem".
*/
list_for_each(lnk, txlist) {
epi = list_entry(lnk,structepitem, txlink);
/*
* Get the ready file event set. We can safely use the file
* because we are holding the "sem" in read and this will
* guarantee that both the file and the item will not vanish.
*/
revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
/*
* Set the return event set for the current file descriptor.
* Note that only the task task was successfully able to link
* the item to its "txlist" will write this field.
*/
epi->revents = revents & epi->event.events;
if(epi->revents) {
if(__put_user(epi->revents,
&events[eventcnt].events) ||
__put_user(epi->event.data,
&events[eventcnt].data))
return-EFAULT;
if(epi->event.events & EPOLLONESHOT)
epi->event.events &= EP_PRIVATE_BITS;
eventcnt++;
}
}
returneventcnt;
}
这个拷贝实现其实没什么可看的,但是请注意revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);这一行,这个poll很狡猾,它把第二个参数置为NULL来调用。我们先看一下设备驱动通常是怎么实现poll的:
staticunsigned int scull_p_poll(structfile*filp, poll_table *wait)
{
structscull_pipe*dev = filp->private_data;
unsigned int mask =0;
/*
* The buffer is circular; it is considered full
* if "wp" is right behind "rp" and empty if the
* two are equal.
*/
down(&dev->sem);
poll_wait(filp, &dev->inq, wait);
poll_wait(filp, &dev->outq, wait);
if(dev->rp != dev->wp)
mask |= POLLIN | POLLRDNORM;/* readable */
if(spacefree(dev))
mask |= POLLOUT | POLLWRNORM;/* writable */
up(&dev->sem);
returnmask;
}
上面这段代码摘自《linux设备驱动程序(第三版)》,绝对经典,设备先要把current(当前进程)挂在inq和outq两个队列上(这个“挂”操作是wait回调函数指针做的),然后等设备来唤醒,唤醒后就能通过mask拿到事件掩码了(注意那个mask参数,它就是负责拿事件掩码的)。那如果wait为NULL,poll_wait会做些什么呢?
[include/linux/poll.h->poll_wait]
staticinlinevoidpoll_wait(struct file * filp,wait_queue_head_t* wait_address,
poll_table *p)
{
if(p && wait_address)
p->qproc(filp, wait_address, p);
}
如果poll_table为空,什么也不做。我们倒回ep_send_events,那句标红的poll,实际上就是“我不想休眠,我只想拿到事件掩码”的意思。然后再把拿到的事件掩码拷给用户空间。ep_send_events完成后,就轮到ep_reinject_items了:
[fs/eventpoll.c->ep_reinject_items]
staticvoid ep_reinject_items(structeventpoll*ep,structlist_head*txlist)
{
int ricnt =0, pwake =0;
unsigned long flags;
structepitem*epi;
write_lock_irqsave(&ep->lock, flags);
while(!list_empty(txlist)) {
epi = list_entry(txlist->next,structepitem, txlink);
/* Unlink the current item from the transfer list */
EP_LIST_DEL(&epi->txlink);
/*
* If the item is no more linked to the interest set, we don't
* have to push it inside the ready list because the following
* ep_release_epitem() is going to drop it. Also, if the current
* item is set to have an Edge Triggered behaviour, we don't have
* to push it back either.
*/
if(EP_RB_LINKED(&epi->rbn) && !(epi->event.events & EPOLLET) &&
(epi->revents & epi->event.events) && !EP_IS_LINKED(&epi->rdllink)) {
list_add_tail(&epi->rdllink, &ep->rdllist);
ricnt++;
}
}
if(ricnt) {
/*
* Wake up ( if active ) both the eventpoll wait list and the ->poll()
* wait list.
*/
if(waitqueue_active(&ep->wq))
wake_up(&ep->wq);
if(waitqueue_active(&ep->poll_wait))
pwake++;
}
write_unlock_irqrestore(&ep->lock, flags);
/* We have to call this outside the lock */
if(pwake)
ep_poll_safewake(&psw, &ep->poll_wait);
}
ep_reinject_items把txlist里的一部分fd又放回rdllist,那么,是把哪一部分fd放回去呢?看上面if (EP_RB_LINKED(&epi->rbn) && !(epi->event.events & EPOLLET) &&这个判断——是哪些“没有标上EPOLLET”(标红代码)且“事件被关注”(标蓝代码)的fd被重新放回了rdllist。那么下次epoll_wait当然会又把rdllist里的fd拿来拷给用户了。举个例子。假设一个socket,只是connect,还没有收发数据,那么它的poll事件掩码总是有POLLOUT的(参见上面的驱动示例),每次调用epoll_wait总是返回POLLOUT事件(比较烦),因为它的fd就总是被放回rdllist;假如此时有人往这个socket里写了一大堆数据,造成socket塞住(不可写了),那么(epi->revents & epi->event.events) && !EP_IS_LINKED(&epi->rdllink)) {里的判断就不成立了(没有POLLOUT了),fd不会放回rdllist,epoll_wait将不会再返回用户POLLOUT事件。现在我们给这个socket加上EPOLLET,然后connect,没有收发数据,此时,if (EP_RB_LINKED(&epi->rbn) && !(epi->event.events & EPOLLET) &&判断又不成立了,所以epoll_wait只会返回一次POLLOUT通知给用户(因为此fd不会再回到rdllist了),接下来的epoll_wait都不会有任何事件通知了。