大数据,机器学习,人工智能大数据 爬虫Python AI Sql玩转大数据

R语言中对文本数据进行主题模型topicmodeling分析

2020-04-17  本文已影响0人  拓端tecdat

原文链接:http://tecdat.cn/?p=4333

主题建模

在文本挖掘中,我们经常收集一些文档集合,例如博客文章或新闻文章,我们希望将其分成自然组,以便我们可以分别理解它们。主题建模是对这些文档进行无监督分类的一种方法,类似于对数字数据进行聚类,即使我们不确定要查找什么,也可以找到自然的项目组。

潜在狄利克雷分配(LDA)是拟合主题模型特别流行的方法。它将每个文档视为主题的混合体,并将每个主题看作是单词的混合体。这允许文档在内容方面相互“重叠”,而不是分离成离散的组,以反映自然语言的典型用法。

need-to-insert-img

结合主题建模的文本分析流程图。topicmodels包采用Document-Term Matrix作为输入,并生成一个可以通过tidytext进行处理的模型,以便可以使用dplyr和ggplot2对其进行处理和可视化。

潜在狄利克雷分配

潜在Dirichlet分配是主题建模中最常用的算法之一。没有深入模型背后的数学,我们可以理解它是由两个原则指导的。

每个文档都是主题的混合体。我们设想每个文档可能包含来自几个主题的文字,特别是比例。例如,在双主题模型中,我们可以说“文档1是90%的主题A和10%的主题B,而文档2是30%的主题A和70%的主题B.”

每个主题都是词汇的混合。例如,我们可以想象一个美国新闻的两个主题模型,一个话题是“政治”,一个是“娱乐”。政治话题中最常见的词语可能是“总统”,“国会”和“政府“,而娱乐主题可以由诸如”电影“,”电视“和”演员“之类的词组成。重要的是,话题可以在话题之间共享;像“预算”这样的词可能同时出现在两者中。

LDA是一种同时估计这两种情况的数学方法:查找与每个主题相关的单词混合,同时确定描述每个文档的主题混合。这个算法有很多现有的实现,我们将深入探讨其中的一个。

library(topicmodels)data("AssociatedPress")AssociatedPress : term frequency (tf)

need-to-insert-img

我们可以使用LDA()topicmodels包中的函数设置k = 2来创建两个主题的LDA模型。

实际上几乎所有的主题模型都会使用更大的模型k,但我们很快就会看到,这种分析方法可以扩展到更多的主题。

此函数返回一个包含模型拟合完整细节的对象,例如单词如何与主题关联以及主题如何与文档关联。

分享:

上一篇 下一篇

猜你喜欢

热点阅读