大数据,机器学习,人工智能机器学习与数据挖掘

TF学习01-Graph&Session

2020-05-23  本文已影响0人  七八音

01. 了解TensorFlow的Graph&Session

这个系列主要是对TensorFlow进行学习,了解其内部机制、运行方法,最后能根据自己的想法构建模型。

image

本文主要的介绍内容是TensorFlow的Graph和Session两个概念,即运算图和会话。

1. 数据流图

TensorFlow哲学:将计算图的定义和执行分离。

image

阶段一:运算图的定义

阶段二:使用session会话执行运算图的操作

2. 什么是Tensor?

Tensor是一个n维的数组

让我们看一个简单的计算图

image

在TensorBoard的模型可视化结果中,结点通常表示操作、变量以及常量;边表示张量tensors。

这些tensor表示的是数据,TensorFlow = tensor + flow = data + flow.

从上面图中我们可以知道,直接打印a并不能得到真正的计算结果8,这也证实了TensorFlow计算图和执行过程确实是分离的

那么,我们如何才能得到计算结果a的值呢?

创建一个Session会话:在会话中可以执行运算图,从而得到a的计算结果值(8)。具体方法就是:

import tensorflow as tf
a = tf.add(3, 5)
sess = tf.Session()
print(sess.run(a))         >> 8
sess.close()

也可以换种写法:

import tensorflow as tf
a = tf.add(3, 5)
with tf.Session() as sess:
    print(sess.run(a))

接下来,我们来看一下tf.Session()这个函数。

3. tf.Session()

tf的Session对象封装了TF的执行环境,在环境中可以执行各种操作以及计算各种张量。此外,Session会话还将分配内存以存储变量的当前值

4. 更复杂的运算图

image

这个运算图完成的计算为:(x*y)^{x+y}

让我们在看一个更复杂的图:

image

在这个图中又定义了一个useless操作,但是我们希望执行的计算是z。在TF运行时,pow_op结点的计算过程并不依赖于useless,因此,会话sess在执行过程中不会执行useless的运算,这样就可以减少不必要的运算过程

那么,如果我们想要同时计算useless和pow_op,应该怎么做呢?

image

sess.run函数的API为:

image

fetches是一个列表,其中包含我们想要执行的计算。因此,我们可以在sess.run([])列表里添加pow_op, useless。

TensorFlow可以将运算图分解为几个块,然后在多个CPU,GPU,TPU或其他设备上并行运行它们。比如:

image

为了方便划分子块的并行计算,我们可以指定它们的执行设备,

image

5. 能不能创建多个运算图?

到目前为止,我们只有一个运算图,我们能不能创建多个运算图呢?答案是可以的,但是不推荐,理由如下:

我们可以自己创建运算图:

g = tf.Graph()

如果想要在默认图中进行操作,需要执行:

g = tf.get_default_graph()

6. TF为什么使用Graph?

7. References

CS 20: Tensorflow for Deep Learning Research


欢迎加入我的公众号,一起学习成长
上一篇 下一篇

猜你喜欢

热点阅读