分布式

Nacos对比Zookeeper、Eureka之间的区别

2020-03-29  本文已影响0人  浪_fa63

CAP定律

这个定理的内容是指的是在一个分布式系统中、Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),三者不可得兼。

一致性(C):在分布式系统中,如果服务器集群,每个节点在同时刻访问必须要保持数据的一致性。

可用性(A):集群节点中,部分节点出现故障后任然可以使用 (高可用)

分区容错性(P):在分布式系统中网络会存在脑裂的问题,部分Server与整个集群失去节点联系,无法组成一个群体。
只有在CP和AP选择一个平衡点

CP情况下:虽然我们服务不通用,但是必须要保证数据的一致性。
AP情况下:可以短暂保证数据不一致性,但是最终可以一致性,不管怎么样,要能够保证我们的服务可用

Nacos与Zookeeper,Eureka区别

相同点:三者都可以实现分布式注册中心框架

不同点:
Zookeeper采用CP保证数据的一致性的问题,原理采用(ZAP原子广播协议),当我们ZK领导者因为某种情况下部分节点出现了故障,会自动重新实现选举新的领导角色,整个选举的过程中为了保证数据一致性的问题,客户端暂时无法使用我们的Zookeeper,那么这以为着整个微服务无法实现通讯。
注意:可运行的节点必须满足过半机制,整个zk采用使用。

Eureka采用AP设计思想实现分布式注册中心,完全去中心化、每个节点都是相等,采用你中有我、我中有你相互注册设计思想, 只要最后有一台Eureka节点存在整个微服务就可以实现通讯。
中心化:必须围绕一个领导角色作为核心,选举为领导和跟随者角色
去中心化:每个角色都是均等

Nacos从1.0版本选择Ap和CP混合形式实现注册中心,默认情况下采用Ap,CP则采用Raft协议实现保持数据的一致性。
如果选择为Ap模式,注册服务的实例仅支持临时模式,在网络分区的的情况允许注册服务实例
选择CP模式可以支持注册服务的实例为持久模式,在网络分区的产生了抖动情况下不允许注册服务实例。

什么情况下选择cp和ap呢

必须要求读取接口的地址保证强一致性的问题,可以采用cp模式, 一般情况下采用ap就可以了

常见分布式一致性算法:

  1. ZAP协议(底层就是基于Paxos实现),核心底层基于2PC两阶段提交协议实现。

  2. Nacos中集群保证一致性算法采ratf协议模式,采用心跳机制实现选举的。

Zap整个底层实现原理

Zookeeper基于ZAP协议实现保持每个节点的数据同步,中心化思想集群模式,分为领导和跟随者的角色

image.png

Ratf整个底层实现原理:

在Raft协议中分为的角色

1.状态:分为三种 跟随者、竞选者、领导

2.大多数: >n/2+1

3.任期:每次选举一个新的领导角色 任期都会增加。

默认情况下选举的过程:

  1. 默认的情况下每个节点都是为跟随者角色

  2. 每个节点随机生成一个选举的超时时间 大概分为100-300ms,在这个超时时间内必须要等待。

  3. 超时时间过后,当前节点的状态由跟随者变为竞选者角色,会给其他的节点发出选举的投票的通知,只要该竞选者有超过半数以上即可选为领导角色。

核心的设计原理其实就是靠的 谁超时时间最短谁就有非常大的概率为领导角色。

  1. 如果我们跟随者节点不能够及时的收到领导角色消息,那么这时候跟随者就会将当前自己的状态由跟随者变为竞选者角色,会给其他的节点发出选举的投票的通知,只要该竞选者有超过半数以上即可选为领导角色。

疑问:是否可能会产生两个同时的竞选者呢,同时实现拉票呢?

注意当我们的集群节点总数,如果是奇数情况下 就算遇到了该问题也不用担心。

当我们的节点是为偶数的情况下,可能会存在该问题,如果两个竞选者获取的票数相等的情况下,开始重置竞选的超时时间,一直到谁的票数最多谁就为领导。

  1. 所有的写的请求都是统一的交给我们的领导角色完成,写入该对应的日志,标记该日志为被提交状态。

  2. 为了提交该日志,领导角色就会将该日志以心跳的形式发送给其他的跟随者节点,只要超过跟随者节点写入该日志,则直接通知其他的跟随者节点同步该数据,这个过程称做为日志复制的过程。

本文参考蚂蚁课堂:http://www.mayikt.com/#

上一篇 下一篇

猜你喜欢

热点阅读