crf

2022-01-03  本文已影响0人  致Great

import torch

import torch.nn as nn

import torch.optim as optim

torch.manual_seed(1)

# some helper functions

def argmax(vec):

    # return the argmax as a python int

    # 第1维度上最大值的下标

    # input: tensor([[2,3,4]])

    # output: 2

    _, idx = torch.max(vec,1)

    return idx.item()

def prepare_sequence(seq,to_ix):

    # 文本序列转化为index的序列形式

    idxs = [to_ix[w] for w in seq]

    return torch.tensor(idxs, dtype=torch.long)

def log_sum_exp(vec):

    #compute log sum exp in a numerically stable way for the forward algorithm

    # 用数值稳定的方法计算正演算法的对数和exp

    # input: tensor([[2,3,4]])

    # max_score_broadcast: tensor([[4,4,4]])

    max_score = vec[0, argmax(vec)]

    max_score_broadcast = max_score.view(1,-1).expand(1,vec.size()[1])

    return max_score+torch.log(torch.sum(torch.exp(vec-max_score_broadcast)))

START_TAG = "<s>"

END_TAG = "<e>"

# create model

class BiLSTM_CRF(nn.Module):

    def __init__(self,vocab_size, tag2ix, embedding_dim, hidden_dim):

        super(BiLSTM_CRF,self).__init__()

        self.embedding_dim = embedding_dim

        self.hidden_dim = hidden_dim

        self.tag2ix = tag2ix

        self.tagset_size = len(tag2ix)

        self.word_embeds = nn.Embedding(vocab_size, embedding_dim)

        self.lstm = nn.LSTM(embedding_dim, hidden_dim//2, num_layers=1, bidirectional=True)

        # maps output of lstm to tog space

        self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)

        # matrix of transition parameters

        # entry i, j is the score of transitioning to i from j

        # tag间的转移矩阵,是CRF层的参数

        self.transitions = nn.Parameter(torch.randn(self.tagset_size, self.tagset_size))

        # these two statements enforce the constraint that we never transfer to the start tag

        # and we never transfer from the stop tag

        self.transitions.data[tag2ix[START_TAG], :] = -10000

        self.transitions.data[:, tag2ix[END_TAG]] = -10000

        self.hidden = self.init_hidden()

    def init_hidden(self):

        return (torch.randn(2, 1,self.hidden_dim//2),

                torch.randn(2, 1,self.hidden_dim//2))

    def _forward_alg(self, feats):

        # to compute partition function

        # 求归一化项的值,应用动态归化算法

        init_alphas = torch.full((1,self.tagset_size), -10000.)# tensor([[-10000.,-10000.,-10000.,-10000.,-10000.]])

        # START_TAG has all of the score

        init_alphas[0][self.tag2ix[START_TAG]] = 0#tensor([[-10000.,-10000.,-10000.,0,-10000.]])

        forward_var = init_alphas

        for feat in feats:

            #feat指Bi-LSTM模型每一步的输出,大小为tagset_size

            alphas_t = []

            for next_tag in range(self.tagset_size):

                # 取其中的某个tag对应的值进行扩张至(1,tagset_size)大小

                # 如tensor([3]) -> tensor([[3,3,3,3,3]])

                emit_score = feat[next_tag].view(1,-1).expand(1,self.tagset_size)

                # 增维操作

                trans_score = self.transitions[next_tag].view(1,-1)

                # 上一步的路径和+转移分数+发射分数

                next_tag_var = forward_var + trans_score + emit_score

                # log_sum_exp求和

                alphas_t.append(log_sum_exp(next_tag_var).view(1))

            # 增维

            forward_var = torch.cat(alphas_t).view(1,-1)

        terminal_var = forward_var+self.transitions[self.tag2ix[END_TAG]]

        alpha = log_sum_exp(terminal_var)

        #归一项的值

        return alpha

    def _get_lstm_features(self,sentence):

        self.hidden = self.init_hidden()

        embeds = self.word_embeds(sentence).view(len(sentence),1,-1)

        lstm_out, self.hidden = self.lstm(embeds, self.hidden)

        lstm_out = lstm_out.view(len(sentence), self.hidden_dim)

        lstm_feats = self.hidden2tag(lstm_out)

        return lstm_feats

    def _score_sentence(self,feats,tags):

        # gives the score of a provides tag sequence

        # 求某一路径的值

        score = torch.zeros(1)

        tags = torch.cat([torch.tensor([self.tag2ix[START_TAG]], dtype=torch.long), tags])

        for i , feat in enumerate(feats):

            score = score + self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]

        score = score + self.transitions[self.tag2ix[END_TAG], tags[-1]]

        return score

    def _viterbi_decode(self, feats):

        # 当参数确定的时候,求解最佳路径

        backpointers = []

        init_vars = torch.full((1,self.tagset_size),-10000.)# tensor([[-10000.,-10000.,-10000.,-10000.,-10000.]])

        init_vars[0][self.tag2ix[START_TAG]] = 0#tensor([[-10000.,-10000.,-10000.,0,-10000.]])

        forward_var = init_vars

        for feat in feats:

            bptrs_t = [] # holds the back pointers for this step

            viterbivars_t = [] # holds the viterbi variables for this step

            for next_tag in range(self.tagset_size):

                next_tag_var = forward_var + self.transitions[next_tag]

                best_tag_id = argmax(next_tag_var)

                bptrs_t.append(best_tag_id)

                viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))

            forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)

            backpointers.append(bptrs_t)

        # Transition to STOP_TAG

        terminal_var = forward_var + self.transitions[self.tag2ix[END_TAG]]

        best_tag_id = argmax(terminal_var)

        path_score = terminal_var[0][best_tag_id]

        # Follow the back pointers to decode the best path.

        best_path = [best_tag_id]

        for bptrs_t in reversed(backpointers):

            best_tag_id = bptrs_t[best_tag_id]

            best_path.append(best_tag_id)

        # Pop off the start tag (we dont want to return that to the caller)

        start = best_path.pop()

        assert start == self.tag2ix[START_TAG]  # Sanity check

        best_path.reverse()

        return path_score, best_path

    def neg_log_likelihood(self, sentence, tags):

        # 由lstm层计算得的每一时刻属于某一tag的值

        feats = self._get_lstm_features(sentence)

        # 归一项的值

        forward_score = self._forward_alg(feats)

        # 正确路径的值

        gold_score = self._score_sentence(feats, tags)

        return forward_score - gold_score# -(正确路径的分值  -  归一项的值)

    def forward(self, sentence):  # dont confuse this with _forward_alg above.

        # Get the emission scores from the BiLSTM

        lstm_feats = self._get_lstm_features(sentence)

        # Find the best path, given the features.

        score, tag_seq = self._viterbi_decode(lstm_feats)

        return score, tag_seq

if __name__ == "__main__":

    EMBEDDING_DIM = 5

    HIDDEN_DIM = 4

    # Make up some training data

    training_data = [(

        "the wall street journal reported today that apple corporation made money".split(),

        "B I I I O O O B I O O".split()

    ), (

        "georgia tech is a university in georgia".split(),

        "B I O O O O B".split()

    )]

    word2ix = {}

    for sentence, tags in training_data:

        for word in sentence:

            if word not in word2ix:

                word2ix[word] = len(word2ix)

    tag2ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, END_TAG: 4}

    model = BiLSTM_CRF(len(word2ix), tag2ix, EMBEDDING_DIM, HIDDEN_DIM)

    optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)

    # Check predictions before training

    # 输出训练前的预测序列

    with torch.no_grad():

        precheck_sent = prepare_sequence(training_data[0][0], word2ix)

        precheck_tags = torch.tensor([tag2ix[t] for t in training_data[0][1]], dtype=torch.long)

        print(model(precheck_sent))

    # Make sure prepare_sequence from earlier in the LSTM section is loaded

    for epoch in range(300):  # again, normally you would NOT do 300 epochs, it is toy data

        for sentence, tags in training_data:

            # Step 1. Remember that Pytorch accumulates gradients.

            # We need to clear them out before each instance

            model.zero_grad()

            # Step 2. Get our inputs ready for the network, that is,

            # turn them into Tensors of word indices.

            sentence_in = prepare_sequence(sentence, word2ix)

            targets = torch.tensor([tag2ix[t] for t in tags], dtype=torch.long)

            # Step 3. Run our forward pass.

            loss = model.neg_log_likelihood(sentence_in, targets)

            # Step 4. Compute the loss, gradients, and update the parameters by

            # calling optimizer.step()

            loss.backward()

            optimizer.step()

    # Check predictions after training

    with torch.no_grad():

        precheck_sent = prepare_sequence(training_data[0][0], word2ix)

        print(model(precheck_sent))

    # 输出结果

    # (tensor(-9996.9365), [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

    # (tensor(-9973.2725), [0, 1, 1, 1, 2, 2, 2, 0, 1, 2, 2])

上一篇下一篇

猜你喜欢

热点阅读