《七天爬虫进阶系列》 - 05 Scrapy框架

2020-02-26  本文已影响0人  聂云⻜

Scrapy简介

了解Scrapy

Scrapy是Python领域专业的爬虫开发框架,其本身整合了大量的工具包,可以完成爬虫程序的大部分通用工作(发送网络请求、数据解析、数据存储、反反爬虫机制),提高开发效率。

Scrapy框架架构

Scrapy快速入门

安装和文档:

  1. 安装:通过pip install scrapy即可安装。
  2. Scrapy官方文档:http://doc.scrapy.org/en/latest
  3. Scrapy中文文档:http://scrapy-chs.readthedocs.io/zh_CN/latest/index.html

创建项目:

要使用Scrapy框架创建项目,需要通过命令来创建。首先进入到你想把这个项目存放的目录。执行以下命令:

scrapy startproject [项目名称]

目录结构介绍:

以下介绍下主要文件的作用:

  1. items.py:用来存放爬虫爬取下来数据的模型。
  2. middlewares.py:用来存放各种中间件的文件。
  3. pipelines.py:用来将items的模型存储到本地磁盘中。
  4. settings.py:本爬虫的一些配置信息(比如请求头、多久发送一次请求、ip代理池等)。
  5. scrapy.cfg:项目的配置文件。
  6. spiders包:以后所有的爬虫,都是存放到这个里面。

使用Scrapy框架爬取糗事百科段子:

使用命令创建一个爬虫:

scrapy gensipder qsbk "qiushibaike.com"

创建了一个名字叫做qsbk的爬虫,并且能爬取的网页只会限制在qiushibaike.com这个域名下。

爬虫代码解析:

import scrapy

class QsbkSpider(scrapy.Spider):
    name = 'qsbk'
    allowed_domains = ['qiushibaike.com']
    start_urls = ['http://qiushibaike.com/']

    def parse(self, response):
        pass

其实这些代码我们完全可以自己手动去写,而不用命令。只不过是不用命令,自己写这些代码比较麻烦。
要创建一个Spider,那么必须自定义一个类,继承自scrapy.Spider,然后在这个类中定义三个属性和一个方法。

  1. name:这个爬虫的名字,名字必须是唯一的。
  2. allow_domains:允许的域名。爬虫只会爬取这个域名下的网页,其他不是这个域名下的网页会被自动忽略。
  3. start_urls:爬虫从这个变量中的url开始。
  4. parse:引擎会把下载器下载回来的数据扔给爬虫解析,爬虫再把数据传给这个parse方法。这个是个固定的写法。这个方法的作用有两个,第一个是提取想要的数据。第二个是生成下一个请求的url。

修改settings.py代码:

在做一个爬虫之前,一定要记得修改setttings.py中的设置。两个地方是强烈建议设置的。

  1. ROBOTSTXT_OBEY设置为False。默认是True。即遵守机器协议,那么在爬虫的时候,scrapy首先去找robots.txt文件,如果没有找到。则直接停止爬取。
  2. DEFAULT_REQUEST_HEADERS添加User-Agent。这个也是告诉服务器,我这个请求是一个正常的请求,不是一个爬虫。

完成的爬虫代码:

  1. 爬虫部分代码:

     import scrapy
     from abcspider.items import QsbkItem
    
     class QsbkSpider(scrapy.Spider):
         name = 'qsbk'
         allowed_domains = ['qiushibaike.com']
         start_urls = ['https://www.qiushibaike.com/text/']
    
         def parse(self, response):
             outerbox = response.xpath("//div[@id='content-left']/div")
             items = []
             for box in outerbox:
                 author = box.xpath(".//div[contains(@class,'author')]//h2/text()").extract_first().strip()
                 content = box.xpath(".//div[@class='content']/span/text()").extract_first().strip()
                 item = QsbkItem()
                 item["author"] = author
                 item["content"] = content
                 items.append(item)
             return items
    
  2. items.py部分代码:

     import scrapy
     class QsbkItem(scrapy.Item):
         author = scrapy.Field()
         content = scrapy.Field()
    
    
  3. pipeline部分代码:

     import json
    
     class AbcspiderPipeline(object):
         def __init__(self):
    
             self.items = []
    
         def process_item(self, item, spider):
             self.items.append(dict(item))
             print("="*40)
             return item
    
         def close_spider(self,spider):
             with open('qsbk.json','w',encoding='utf-8') as fp:
                 json.dump(self.items,fp,ensure_ascii=False)
    

运行scrapy项目:

运行scrapy项目。需要在终端,进入项目所在的路径,然后scrapy crawl [爬虫名字]即可运行指定的爬虫。如果不想每次都在命令行中运行,那么可以把这个命令写在一个文件中。以后就在pycharm中执行运行这个文件就可以了。比如现在新创建一个文件叫做start.py,然后在这个文件中填入以下代码:

from scrapy import cmdline

cmdline.execute("scrapy crawl qsbk".split())

参考:https://www.cnblogs.com/pontoon/p/10247589.html

https://mp.weixin.qq.com/s/hqdtE1aid3UjjhEfe8hfbw

上一篇下一篇

猜你喜欢

热点阅读