机器学习与凸优化技术总概括(statistical machin
2016-09-11 本文已影响0人
L达达D的马蹄
目前大数据技术应用面越来越广,比如:投放广告、推荐系统、目标识别、生物科技、健康医疗等等,掌握必要的大数据技术有利于挖掘数据背后的价值。
引言
大规模机器学习与优化技术
函数类(凸函数,平滑函数等)
传统的统计分析方法
凸优化经典方法
平滑优化
非平滑优化
邻d近优化
经典随机逼近
渐进分析
Robbins-Monro 算法
Polyak-Rupert 平均
非平滑随机逼近
随机梯度和平均
非渐进的结果
强凸VS非强凸
平滑随机渐进算法
Non-asymptotic analysis for smooth functions
Logistic regression
Least-squares regression without decaying step-sizes
有限的数据集
Gradient methods with exponential convergence rates
Convex duality
Dual stochastic coordinate descent - Frank-Wolfe