Pandas CSV - read_csv / to_csv()

2021-05-14  本文已影响0人  shellblock

CSV(Comma-Separated Values,逗号分隔值,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。

CSV 是一种通用的、相对简单的文件格式,被用户、商业和科学广泛应用。

本文以 meal_order_info.csv 为例说明。

语法

基本语法格式:

pd.read_csv(filepath_or_buffer: Union[str, pathlib.Path, IO[~AnyStr]],
sep=',', delimiter=None, header='infer', names=None, index_col=None,
usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True,
dtype=None, engine=None, converters=None, true_values=None,
false_values=None, skipinitialspace=False, skiprows=None,
skipfooter=0, nrows=None, na_values=None, keep_default_na=True,
na_filter=True, verbose=False, skip_blank_lines=True,
parse_dates=False, infer_datetime_format=False,
keep_date_col=False, date_parser=None, dayfirst=False,
cache_dates=True, iterator=False, chunksize=None,
compression='infer', thousands=None, decimal: str = '.',
lineterminator=None, quotechar='"', quoting=0,
doublequote=True, escapechar=None, comment=None,
encoding=None, dialect=None, error_bad_lines=True,
warn_bad_lines=True, delim_whitespace=False,
low_memory=True, memory_map=False, float_precision=None)

参数

pandas.read_csv函数常用参数及说明:

参数名称 说明
filepath 接收str,表示文件路径,无默认值
sep 接收str,表示文件的分隔符,默认为“,”
header 接收int或sequence,表示将某行数据为列名,为int时表示将第n行作为列名;为sequence时表示将sequence作为列名。默认为infer,表示自动识别
name 接收array
index_col 接收int,sequence,False
dtype 接收dict
engine 接收c或Python
nrows 接收int
encoding 接收str

实例

import pandas as pd
df = pd.read_csv('.../data/meal_order_info.csv', encoding='gbk')
print(df.head())

输出结果为:

    info_id  emp_id  number_consumers  mode  dining_table_id  \
0      417    1442                 4   NaN             1501   
1      301    1095                 3   NaN             1430   
2      413    1147                 6   NaN             1488   
3      415    1166                 4   NaN             1502   
4      392    1094                10   NaN             1499   

   dining_table_name  expenditure  dishes_count  accounts_payable  \
0               1022          165             5               165   
1               1031          321             6               321   
2               1009          854            15               854   
3               1023          466            10               466   
4               1020          704            24               704   

      use_start_time  ...           lock_time cashier_id  pc_id  order_number  \
0  2016/8/1 11:05:36  ...   2016/8/1 11:11:46        NaN    NaN           NaN   
1  2016/8/1 11:15:57  ...   2016/8/1 11:31:55        NaN    NaN           NaN   
2  2016/8/1 12:42:52  ...   2016/8/1 12:54:37        NaN    NaN           NaN   
3  2016/8/1 12:51:38  ...   2016/8/1 13:08:20        NaN    NaN           NaN   
4  2016/8/1 12:58:44  ...   2016/8/1 13:07:16        NaN    NaN           NaN   

   org_id  print_doc_bill_num  lock_table_info  order_status        phone  \
0     330                 NaN              NaN             1  18688880641   
1     328                 NaN              NaN             1  18688880174   
2     330                 NaN              NaN             1  18688880276   
3     330                 NaN              NaN             1  18688880231   
4     330                 NaN              NaN             1  18688880173   

   name  
0   苗宇怡  
1    赵颖  
2   徐毅凡  
3   张大鹏  
4   孙熙凯  

[5 rows x 21 columns]

同样也可以使用to_csv()方法将 DataFrame 存储为 csv 文件

实例

import pandas as pd
   
# 三个字段 name, site, age
nme = ["Google", "Runoob", "Taobao", "Wiki"]
st = ["www.google.com", "www.runoob.com", "www.taobao.com", "www.wikipedia.org"]
ag = [90, 40, 80, 98]
   
# 字典
dict = {'name': nme, 'site': st, 'age': ag}
     
df = pd.DataFrame(dict)
 
# 保存 dataframe
df.to_csv('site.csv')

执行成功后,我们打开 site.csv 文件,显示结果如下:


site.csv

数据处理

head()
head( n ) 方法用于读取前面的 n 行,如果不填参数 n ,默认返回 5 行。

实例 - 读取前面 5 行

import pandas as pd
df = pd.read_csv('nba.csv')
print(df.head())

输出结果为:

            Name            Team  Number Position   Age Height  Weight            College     Salary
0  Avery Bradley  Boston Celtics     0.0       PG  25.0    6-2   180.0              Texas  7730337.0
1    Jae Crowder  Boston Celtics    99.0       SF  25.0    6-6   235.0          Marquette  6796117.0
2   John Holland  Boston Celtics    30.0       SG  27.0    6-5   205.0  Boston University        NaN
3    R.J. Hunter  Boston Celtics    28.0       SG  22.0    6-5   185.0      Georgia State  1148640.0
4  Jonas Jerebko  Boston Celtics     8.0       PF  29.0   6-10   231.0                NaN  5000000.0

实例 - 读取前面 10 行

import pandas as pd

df = pd.read_csv('nba.csv')

print(df.head(10))

输出结果为:

            Name            Team  Number Position   Age Height  Weight            College      Salary
0  Avery Bradley  Boston Celtics     0.0       PG  25.0    6-2   180.0              Texas   7730337.0
1    Jae Crowder  Boston Celtics    99.0       SF  25.0    6-6   235.0          Marquette   6796117.0
2   John Holland  Boston Celtics    30.0       SG  27.0    6-5   205.0  Boston University         NaN
3    R.J. Hunter  Boston Celtics    28.0       SG  22.0    6-5   185.0      Georgia State   1148640.0
4  Jonas Jerebko  Boston Celtics     8.0       PF  29.0   6-10   231.0                NaN   5000000.0
5   Amir Johnson  Boston Celtics    90.0       PF  29.0    6-9   240.0                NaN  12000000.0
6  Jordan Mickey  Boston Celtics    55.0       PF  21.0    6-8   235.0                LSU   1170960.0
7   Kelly Olynyk  Boston Celtics    41.0        C  25.0    7-0   238.0            Gonzaga   2165160.0
8   Terry Rozier  Boston Celtics    12.0       PG  22.0    6-2   190.0         Louisville   1824360.0
9   Marcus Smart  Boston Celtics    36.0       PG  22.0    6-4   220.0     Oklahoma State   3431040.0

tail()

tail( n ) 方法用于读取尾部的 n 行,如果不填参数 n ,默认返回 5 行,空行各个字段的值返回 NaN。

实例 - 读取末尾 5 行

import pandas as pd

df = pd.read_csv('nba.csv')

print(df.tail())

输出结果为:

             Name       Team  Number Position   Age Height  Weight College     Salary
453  Shelvin Mack  Utah Jazz     8.0       PG  26.0    6-3   203.0  Butler  2433333.0
454     Raul Neto  Utah Jazz    25.0       PG  24.0    6-1   179.0     NaN   900000.0
455  Tibor Pleiss  Utah Jazz    21.0        C  26.0    7-3   256.0     NaN  2900000.0
456   Jeff Withey  Utah Jazz    24.0        C  26.0    7-0   231.0  Kansas   947276.0
457           NaN        NaN     NaN      NaN   NaN    NaN     NaN     NaN        NaN

实例 - 读取末尾 10 行

import pandas as pd

df = pd.read_csv('nba.csv')

print(df.tail(10))

输出结果为:

               Name       Team  Number Position   Age Height  Weight   College      Salary
448  Gordon Hayward  Utah Jazz    20.0       SF  26.0    6-8   226.0    Butler  15409570.0
449     Rodney Hood  Utah Jazz     5.0       SG  23.0    6-8   206.0      Duke   1348440.0
450      Joe Ingles  Utah Jazz     2.0       SF  28.0    6-8   226.0       NaN   2050000.0
451   Chris Johnson  Utah Jazz    23.0       SF  26.0    6-6   206.0    Dayton    981348.0
452      Trey Lyles  Utah Jazz    41.0       PF  20.0   6-10   234.0  Kentucky   2239800.0
453    Shelvin Mack  Utah Jazz     8.0       PG  26.0    6-3   203.0    Butler   2433333.0
454       Raul Neto  Utah Jazz    25.0       PG  24.0    6-1   179.0       NaN    900000.0
455    Tibor Pleiss  Utah Jazz    21.0        C  26.0    7-3   256.0       NaN   2900000.0
456     Jeff Withey  Utah Jazz    24.0        C  26.0    7-0   231.0    Kansas    947276.0
457             NaN        NaN     NaN      NaN   NaN    NaN     NaN       NaN         NaN

info()

info() 方法返回表格的一些基本信息:

实例

import pandas as pd

df = pd.read_csv('nba.csv')

print(df.info())

输出结果为:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 458 entries, 0 to 457          # 行数,458 行,第一行编号为 0
Data columns (total 9 columns):            # 列数,9列
 #   Column    Non-Null Count  Dtype       # 各列的数据类型
---  ------    --------------  -----  
 0   Name      457 non-null    object 
 1   Team      457 non-null    object 
 2   Number    457 non-null    float64
 3   Position  457 non-null    object 
 4   Age       457 non-null    float64
 5   Height    457 non-null    object 
 6   Weight    457 non-null    float64
 7   College   373 non-null    object         # non-null,意思为非空的数据    
 8   Salary    446 non-null    float64
dtypes: float64(4), object(5)                 # 类型

non-null 为非空数据,我们可以看到上面的信息中,总共 458 行,College 字段的空值最多。

本文所用到的相关文件下载

上一篇下一篇

猜你喜欢

热点阅读