Maximal Square
2017-03-10 本文已影响11人
我叫胆小我喜欢小心
题目来源
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing only 1's and return its area.
For example, given the following matrix:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 4.
寻找最大矩形。想到应该用DP,但是还没想到应该怎么用。
突然想到之前做过找最大长方形的,也可以用类似的方法。想想不行。
然后想想利用dp[i][j]和dp[i-1][j-1]的关系也是可行的。
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
int m = matrix.size();
if (m == 0)
return 0;
int n = matrix[0].size();
vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++) {
if (matrix[i-1][j-1] == '0')
dp[i][j] = 0;
else {
dp[i][j]++;
for (int k=1; k<=dp[i-1][j-1]; k++) {
if (matrix[i-k-1][j-1] != '1' || matrix[i-1][j-k-1] != '1')
break;
dp[i][j]++;
}
}
}
int res = 0;
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++)
res = max(res, dp[i][j] * dp[i][j]);
return res;
}
};
看了看讨论区,发现可以改进,直接如下:
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
int m = matrix.size();
if (m == 0)
return 0;
int n = matrix[0].size();
int res = 0;
vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
for (int i=1; i<=m; i++)
for (int j=1; j<=n; j++) {
if (matrix[i-1][j-1] == '0')
dp[i][j] = 0;
else {
dp[i][j] = min(dp[i-1][j-1] + 1, min(dp[i-1][j], dp[i][j-1]) + 1);
res = max(res, dp[i][j] * dp[i][j]);
}
}
return res;
}
};