Python新世界

Python与C混合编程!是Python和C都不具备的超能力!

2018-12-22  本文已影响1人  919b0c54458f

编写 c => python 的接口文件

// vectory_py.c

extern "C" {

vector* new_vector(){

return new vector;

}

void delete_vector(vector* v){

cout << "destructor called in C++ for " << v << endl;

delete v;

}

int vector_size(vector* v){

return v->size();

}

point_t vector_get(vector* v, int i){

return v->at(i);

}

void vector_push_back(vector* v, point_t i){

v->push_back(i);

}

}

编译: gcc -fPIC -shared -lpython3.6m -o vector_py.so vectory_py.c

编写 ctypes 类型文件

from ctypes import *

class c_point_t(Structure):

_fields_ = [("x", c_int), ("y", c_int)]

class Vector(object):

lib = cdll.LoadLibrary('./vector_py_lib.so') # class level loading lib

lib.new_vector.restype = c_void_p

lib.new_vector.argtypes = []

lib.delete_vector.restype = None

lib.delete_vector.argtypes = [c_void_p]

lib.vector_size.restype = c_int

lib.vector_size.argtypes = [c_void_p]

lib.vector_get.restype = c_point_t

lib.vector_get.argtypes = [c_void_p, c_int]

lib.vector_push_back.restype = None

lib.vector_push_back.argtypes = [c_void_p, c_point_t]

lib.foo.restype = None

lib.foo.argtypes = []

def __init__(self):

self.vector = Vector.lib.new_vector() # pointer to new vector

def __del__(self): # when reference count hits 0 in Python,

Vector.lib.delete_vector(self.vector) # call C++ vector destructor

def __len__(self):

return Vector.lib.vector_size(self.vector)

def __getitem__(self, i): # access elements in vector at index

if 0 <= i < len(self):

return Vector.lib.vector_get(self.vector, c_int(i))

raise IndexError('Vector index out of range')

def __repr__(self):

return '[{}]'.format(', '.join(str(self[i]) for i in range(len(self))))

def push(self, i): # push calls vector's push_back

Vector.lib.vector_push_back(self.vector, i)

def foo(self): # foo in Python calls foo in C++

Vector.lib.foo(self.vector)

然后才是调用

from vector import *

a = Vector()

b = c_point_t(10, 20)

a.push(b)

a.foo()

for i in range(len(a)) :

print(a[i].x)

print(a[i].y)

为Python写扩展

完成上述的操作后,我头很大,很难想象当项目稍微修改后,我们要跟随变化的代码量有多大!于是换了一种思路,为Python写扩展。

进群:960410445  有惊喜大礼包!

安装Python开发包

yum install -y python36-devel

修改数据交互文件

#include

PyObject* foo()

{

PyObject* result = PyList_New(0);

int i = 0, j = 0;

for (j = 0; j < 2; j++) {

PyObject* sub = PyList_New(0);

for (i = 0; i < 100; ++i)

{

PyList_Append(sub, Py_BuildValue("{s:i, s:i}", "x", i, "y", 100 - i));

}

PyList_Append(result, sub);

}

return result;

}

调用

from ctypes import *

lib = cdll.LoadLibrary('./extlist.so') # class level loading lib

lib.foo.restype = py_object

b = lib.foo()

for i in range(len(b)) :

for j in range(len(b[i])) :

d = b[i][j]

print(d['x'])

很显然,第二种方式中,我已经封装了很复杂的结构了,如果用 c++ 来表示的话,将是:

vector<vector >

遇到的问题

Python C 混编时 Segment

这个问题困扰了我有一段时间,开始一直在纠结是代码哪错了,后来恍然大悟,Python

和 C 的堆栈是完全不同的,而当我在交互大量数据的时候,Python GC 可能会把 C

的内存当作未使用,直接给释放了(尤其是上述第二种方案),这就是问题所在。(Python GC 中使用的代龄后续专门开文章来说明,欢迎关注公众号

cn_isnap)

这里的解决方案其实有很多,内存能撑过Python前两代的检查就可了,或者是纯C管理。在这里我推荐一种粗暴的解决方案:

对于任何调用Python对象或Python C API的C代码,确保你首先已经正确地获取和释放了GIL。 这可以用 PyGILState_Ensure() 和 PyGILState_Release() 来做到,如下所示:

...

/* Make sure we own the GIL */

PyGILState_STATE state = PyGILState_Ensure();

/* Use functions in the interpreter */

...

/* Restore previous GIL state and return */

PyGILState_Release(state);

上一篇下一篇

猜你喜欢

热点阅读