Pandas 时间序列 - 实例方法与重采样
呆鸟云:“数据分析就像是夜里行军,业务知识是灯塔,分析思维是地图,没灯塔你不知道方向,没地图你不知道该怎么走。技术是你的交通工具,你用11路腿儿着,还是骑自行车,还是开跑车,交通工具越好,你实现目标的速度越快 。”
移位与延迟
有时,需要整体向前或向后移动时间序列里的值,这就是移位与延迟。实现这一操作的方法是 shift()
,该方法适用于所有 Pandas 对象。
In [272]: ts = pd.Series(range(len(rng)), index=rng)
In [273]: ts = ts[:5]
In [274]: ts.shift(1)
Out[274]:
2012-01-01 NaN
2012-01-02 0.0
2012-01-03 1.0
Freq: D, dtype: float64
shift
方法支持 freq
参数,可以把 DateOffset
、timedelta
对象、偏移量别名
作为参数值:
In [275]: ts.shift(5, freq=pd.offsets.BDay())
Out[275]:
2012-01-06 0
2012-01-09 1
2012-01-10 2
Freq: B, dtype: int64
In [276]: ts.shift(5, freq='BM')
Out[276]:
2012-05-31 0
2012-05-31 1
2012-05-31 2
Freq: D, dtype: int64
除更改数据与索引的对齐方式外,DataFrame
与 Series
对象还提供了 tshift()
便捷方法,可以指定偏移量修改索引日期。
In [277]: ts.tshift(5, freq='D')
Out[277]:
2012-01-06 0
2012-01-07 1
2012-01-08 2
Freq: D, dtype: int64
注意,使用 tshift()
时,因为数据没有重对齐,NaN
不会排在前面。
频率转换
改变频率的函数主要是 asfreq()
。对于 DatetimeIndex
,这就是一个调用 reindex()
,并生成 date_range
的便捷打包器。
In [278]: dr = pd.date_range('1/1/2010', periods=3, freq=3 * pd.offsets.BDay())
In [279]: ts = pd.Series(np.random.randn(3), index=dr)
In [280]: ts
Out[280]:
2010-01-01 1.494522
2010-01-06 -0.778425
2010-01-11 -0.253355
Freq: 3B, dtype: float64
In [281]: ts.asfreq(pd.offsets.BDay())
Out[281]:
2010-01-01 1.494522
2010-01-04 NaN
2010-01-05 NaN
2010-01-06 -0.778425
2010-01-07 NaN
2010-01-08 NaN
2010-01-11 -0.253355
Freq: B, dtype: float64
asfreq
用起来很方便,可以为频率转化后出现的任意间隔指定插值方法。
In [282]: ts.asfreq(pd.offsets.BDay(), method='pad')
Out[282]:
2010-01-01 1.494522
2010-01-04 1.494522
2010-01-05 1.494522
2010-01-06 -0.778425
2010-01-07 -0.778425
2010-01-08 -0.778425
2010-01-11 -0.253355
Freq: B, dtype: float64
向前与向后填充
与 asfreq
与 reindex
相关的是 fillna()
,有关文档请参阅缺失值。
转换 Python 日期与时间
用 to_datetime
方法可以把DatetimeIndex
转换为 Python 原生 datetime.datetime
对象数组。
重采样
0.18.0 版修改了
.resample
接口,现在的.resample
更灵活,更像 groupby。参阅更新文档 ,对比新旧版本操作的区别。
Pandas 有一个虽然简单,但却强大、高效的功能,可在频率转换时执行重采样,如,将秒数据转换为 5 分钟数据,这种操作在金融等领域里的应用非常广泛。
resample()
是基于时间的分组操作,每个组都遵循归纳方法。参阅 Cookbook 示例了解高级应用。
从 0.18.0 版开始,resample()
可以直接用于 DataFrameGroupBy
对象,参阅 groupby 文档。
基础知识
In [283]: rng = pd.date_range('1/1/2012', periods=100, freq='S')
In [284]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
In [285]: ts.resample('5Min').sum()
Out[285]:
2012-01-01 25103
Freq: 5T, dtype: int64
resample
函数非常灵活,可以指定多种频率转换与重采样参数。
任何支持派送(dispatch)的函数都可用于 resample
返回对象,包括 sum
、mean
、std
、sem
、max
、min
、mid
、median
、first
、last
、ohlc
:
In [286]: ts.resample('5Min').mean()
Out[286]:
2012-01-01 251.03
Freq: 5T, dtype: float64
In [287]: ts.resample('5Min').ohlc()
Out[287]:
open high low close
2012-01-01 308 460 9 205
In [288]: ts.resample('5Min').max()
Out[288]:
2012-01-01 460
Freq: 5T, dtype: int64
对于下采样,closed
可以设置为left
或 right
,用于指定关闭哪一端间隔:
In [289]: ts.resample('5Min', closed='right').mean()
Out[289]:
2011-12-31 23:55:00 308.000000
2012-01-01 00:00:00 250.454545
Freq: 5T, dtype: float64
In [290]: ts.resample('5Min', closed='left').mean()
Out[290]:
2012-01-01 251.03
Freq: 5T, dtype: float64
label
、loffset
等参数用于生成标签。label
指定生成的结果是否要为间隔标注起始时间。loffset
调整输出标签的时间。
In [291]: ts.resample('5Min').mean() # 默认为 label='left'
Out[291]:
2012-01-01 251.03
Freq: 5T, dtype: float64
In [292]: ts.resample('5Min', label='left').mean()
Out[292]:
2012-01-01 251.03
Freq: 5T, dtype: float64
In [293]: ts.resample('5Min', label='left', loffset='1s').mean()
Out[293]:
2012-01-01 00:00:01 251.03
dtype: float64
除了
M
、A
、Q
、BM
、BA
、BQ
、W
的默认值是right
外,其它频率偏移量的label
与closed
默认值都是left
。这种操作可能会导致时间回溯,即后面的时间会被拉回到前面的时间,如下例的
BusinessDay
频率所示。
In [294]: s = pd.date_range('2000-01-01', '2000-01-05').to_series()
In [295]: s.iloc[2] = pd.NaT
In [296]: s.dt.weekday_name
Out[296]:
2000-01-01 Saturday
2000-01-02 Sunday
2000-01-03 NaN
2000-01-04 Tuesday
2000-01-05 Wednesday
Freq: D, dtype: object
# 默认为:label='left', closed='left'
In [297]: s.resample('B').last().dt.weekday_name
Out[297]:
1999-12-31 Sunday
2000-01-03 NaN
2000-01-04 Tuesday
2000-01-05 Wednesday
Freq: B, dtype: object
看到了吗?星期日被拉回到了上一个星期五。要想把星期日移至星期一,改用以下代码:
In [298]: s.resample('B', label='right', closed='right').last().dt.weekday_name
Out[298]:
2000-01-03 Sunday
2000-01-04 Tuesday
2000-01-05 Wednesday
Freq: B, dtype: object
axis
参数的值为 0
或 1
,并可指定 DataFrame
重采样的轴。
kind
参数可以是 timestamp
或 period
,转换为时间戳或时间段形式的索引。resample
默认保留输入的日期时间形式。
重采样 period
数据时(详情见下文),convention
可以设置为 start
或 end
。指定低频时间段如何转换为高频时间段。
上采样
上采样可以指定上采样的方式及插入时间间隔的 limit
参数:
# 从秒到每 250 毫秒
In [299]: ts[:2].resample('250L').asfreq()
Out[299]:
2012-01-01 00:00:00.000 308.0
2012-01-01 00:00:00.250 NaN
2012-01-01 00:00:00.500 NaN
2012-01-01 00:00:00.750 NaN
2012-01-01 00:00:01.000 204.0
Freq: 250L, dtype: float64
In [300]: ts[:2].resample('250L').ffill()
Out[300]:
2012-01-01 00:00:00.000 308
2012-01-01 00:00:00.250 308
2012-01-01 00:00:00.500 308
2012-01-01 00:00:00.750 308
2012-01-01 00:00:01.000 204
Freq: 250L, dtype: int64
In [301]: ts[:2].resample('250L').ffill(limit=2)
Out[301]:
2012-01-01 00:00:00.000 308.0
2012-01-01 00:00:00.250 308.0
2012-01-01 00:00:00.500 308.0
2012-01-01 00:00:00.750 NaN
2012-01-01 00:00:01.000 204.0
Freq: 250L, dtype: float64
稀疏重采样
相对于时间点总量,稀疏时间序列重采样的点要少很多。单纯上采样稀疏系列可能会生成很多中间值。未指定填充值,即 fill_method
是 None
时,中间值将填充为 NaN
。
鉴于 resample
是基于时间的分组,下列这种方法可以有效重采样,只是分组不是都为 NaN
。
In [302]: rng = pd.date_range('2014-1-1', periods=100, freq='D') + pd.Timedelta('1s')
In [303]: ts = pd.Series(range(100), index=rng)
对 Series
全范围重采样。
In [304]: ts.resample('3T').sum()
Out[304]:
2014-01-01 00:00:00 0
2014-01-01 00:03:00 0
2014-01-01 00:06:00 0
2014-01-01 00:09:00 0
2014-01-01 00:12:00 0
..
2014-04-09 23:48:00 0
2014-04-09 23:51:00 0
2014-04-09 23:54:00 0
2014-04-09 23:57:00 0
2014-04-10 00:00:00 99
Freq: 3T, Length: 47521, dtype: int64
对以下包含点的分组重采样:
In [305]: from functools import partial
In [306]: from pandas.tseries.frequencies import to_offset
In [307]: def round(t, freq):
.....: freq = to_offset(freq)
.....: return pd.Timestamp((t.value // freq.delta.value) * freq.delta.value)
.....:
In [308]: ts.groupby(partial(round, freq='3T')).sum()
Out[308]:
2014-01-01 0
2014-01-02 1
2014-01-03 2
2014-01-04 3
2014-01-05 4
..
2014-04-06 95
2014-04-07 96
2014-04-08 97
2014-04-09 98
2014-04-10 99
Length: 100, dtype: int64
聚合
类似于聚合 API,Groupby API 及窗口函数 API,Resampler
可以有选择地重采样。
DataFrame
重采样,默认用相同函数操作所有列。
In [309]: df = pd.DataFrame(np.random.randn(1000, 3),
.....: index=pd.date_range('1/1/2012', freq='S', periods=1000),
.....: columns=['A', 'B', 'C'])
.....:
In [310]: r = df.resample('3T')
In [311]: r.mean()
Out[311]:
A B C
2012-01-01 00:00:00 -0.033823 -0.121514 -0.081447
2012-01-01 00:03:00 0.056909 0.146731 -0.024320
2012-01-01 00:06:00 -0.058837 0.047046 -0.052021
2012-01-01 00:09:00 0.063123 -0.026158 -0.066533
2012-01-01 00:12:00 0.186340 -0.003144 0.074752
2012-01-01 00:15:00 -0.085954 -0.016287 -0.050046
标准 getitem
操作可以指定的一列或多列。
In [312]: r['A'].mean()
Out[312]:
2012-01-01 00:00:00 -0.033823
2012-01-01 00:03:00 0.056909
2012-01-01 00:06:00 -0.058837
2012-01-01 00:09:00 0.063123
2012-01-01 00:12:00 0.186340
2012-01-01 00:15:00 -0.085954
Freq: 3T, Name: A, dtype: float64
In [313]: r[['A', 'B']].mean()
Out[313]:
A B
2012-01-01 00:00:00 -0.033823 -0.121514
2012-01-01 00:03:00 0.056909 0.146731
2012-01-01 00:06:00 -0.058837 0.047046
2012-01-01 00:09:00 0.063123 -0.026158
2012-01-01 00:12:00 0.186340 -0.003144
2012-01-01 00:15:00 -0.085954 -0.016287
聚合还支持函数列表与字典,输出的是 DataFrame
。
In [314]: r['A'].agg([np.sum, np.mean, np.std])
Out[314]:
sum mean std
2012-01-01 00:00:00 -6.088060 -0.033823 1.043263
2012-01-01 00:03:00 10.243678 0.056909 1.058534
2012-01-01 00:06:00 -10.590584 -0.058837 0.949264
2012-01-01 00:09:00 11.362228 0.063123 1.028096
2012-01-01 00:12:00 33.541257 0.186340 0.884586
2012-01-01 00:15:00 -8.595393 -0.085954 1.035476
重采样后的 DataFrame
,可以为每列指定函数列表,生成结构化索引的聚合结果:
In [315]: r.agg([np.sum, np.mean])
Out[315]:
A B C
sum mean sum mean sum mean
2012-01-01 00:00:00 -6.088060 -0.033823 -21.872530 -0.121514 -14.660515 -0.081447
2012-01-01 00:03:00 10.243678 0.056909 26.411633 0.146731 -4.377642 -0.024320
2012-01-01 00:06:00 -10.590584 -0.058837 8.468289 0.047046 -9.363825 -0.052021
2012-01-01 00:09:00 11.362228 0.063123 -4.708526 -0.026158 -11.975895 -0.066533
2012-01-01 00:12:00 33.541257 0.186340 -0.565895 -0.003144 13.455299 0.074752
2012-01-01 00:15:00 -8.595393 -0.085954 -1.628689 -0.016287 -5.004580 -0.050046
把字典传递给 aggregate
,可以为 DataFrame
里不同的列应用不同聚合函数。
In [316]: r.agg({'A': np.sum,
.....: 'B': lambda x: np.std(x, ddof=1)})
.....:
Out[316]:
A B
2012-01-01 00:00:00 -6.088060 1.001294
2012-01-01 00:03:00 10.243678 1.074597
2012-01-01 00:06:00 -10.590584 0.987309
2012-01-01 00:09:00 11.362228 0.944953
2012-01-01 00:12:00 33.541257 1.095025
2012-01-01 00:15:00 -8.595393 1.035312
还可以用字符串代替函数名。为了让字符串有效,必须在重采样对象上操作:
In [317]: r.agg({'A': 'sum', 'B': 'std'})
Out[317]:
A B
2012-01-01 00:00:00 -6.088060 1.001294
2012-01-01 00:03:00 10.243678 1.074597
2012-01-01 00:06:00 -10.590584 0.987309
2012-01-01 00:09:00 11.362228 0.944953
2012-01-01 00:12:00 33.541257 1.095025
2012-01-01 00:15:00 -8.595393 1.035312
甚至还可以为每列单独多个聚合函数。
In [318]: r.agg({'A': ['sum', 'std'], 'B': ['mean', 'std']})
Out[318]:
A B
sum std mean std
2012-01-01 00:00:00 -6.088060 1.043263 -0.121514 1.001294
2012-01-01 00:03:00 10.243678 1.058534 0.146731 1.074597
2012-01-01 00:06:00 -10.590584 0.949264 0.047046 0.987309
2012-01-01 00:09:00 11.362228 1.028096 -0.026158 0.944953
2012-01-01 00:12:00 33.541257 0.884586 -0.003144 1.095025
2012-01-01 00:15:00 -8.595393 1.035476 -0.016287 1.035312
如果 DataFrame
用的不是 datetime
型索引,则可以基于 datetime
数据列重采样,用关键字 on
控制。
In [319]: df = pd.DataFrame({'date': pd.date_range('2015-01-01', freq='W', periods=5),
.....: 'a': np.arange(5)},
.....: index=pd.MultiIndex.from_arrays([
.....: [1, 2, 3, 4, 5],
.....: pd.date_range('2015-01-01', freq='W', periods=5)],
.....: names=['v', 'd']))
.....:
In [320]: df
Out[320]:
date a
v d
1 2015-01-04 2015-01-04 0
2 2015-01-11 2015-01-11 1
3 2015-01-18 2015-01-18 2
4 2015-01-25 2015-01-25 3
5 2015-02-01 2015-02-01 4
In [321]: df.resample('M', on='date').sum()
Out[321]:
a
date
2015-01-31 6
2015-02-28 4
同样,还可以对 datetime MultiIndex
重采样,通过关键字 level
传递名字与位置。
In [322]: df.resample('M', level='d').sum()
Out[322]:
a
d
2015-01-31 6
2015-02-28 4
分组迭代
Resampler
对象迭代分组数据的操作非常自然,类似于 itertools.groupby()
:
In [323]: small = pd.Series(
.....: range(6),
.....: index=pd.to_datetime(['2017-01-01T00:00:00',
.....: '2017-01-01T00:30:00',
.....: '2017-01-01T00:31:00',
.....: '2017-01-01T01:00:00',
.....: '2017-01-01T03:00:00',
.....: '2017-01-01T03:05:00'])
.....: )
.....:
In [324]: resampled = small.resample('H')
In [325]: for name, group in resampled:
.....: print("Group: ", name)
.....: print("-" * 27)
.....: print(group, end="\n\n")
.....:
Group: 2017-01-01 00:00:00
---------------------------
2017-01-01 00:00:00 0
2017-01-01 00:30:00 1
2017-01-01 00:31:00 2
dtype: int64
Group: 2017-01-01 01:00:00
---------------------------
2017-01-01 01:00:00 3
dtype: int64
Group: 2017-01-01 02:00:00
---------------------------
Series([], dtype: int64)
Group: 2017-01-01 03:00:00
---------------------------
2017-01-01 03:00:00 4
2017-01-01 03:05:00 5
dtype: int64
了解更多详情,请参阅分组迭代或 itertools.groupby()
。