功能强大的python包(七):BeautifulSoup(HT
2021-07-30 本文已影响0人
可爱多多少
1.BeautifulSoup简介
BeautifulSoup是一个可以从HTML或XML文件中提取数据的python库;它能够通过转换器实现惯用的文档导航、查找、修改文档的方式。
BeautifulSoup是一个基于re开发的解析库,可以提供一些强大的解析功能;使用BeautifulSoup能够提高提取数据的效率与爬虫开发效率。
2.网络爬虫
爬虫基本流程:
发起请求:
通过HTTP库向目标站点发起请求,等待目标站点服务器响应。
获取响应:
若服务器正常响应,会返回一个Response,该Response即为获取得页面内容,Response可以是HTML、JSON字符串、二进制数据等数据类型。
解析内容:
利用正则表达式、网页解析库对HTML进行解析;将json数据转为JSON对象进行解析;保存我们需要得二进制数据(图片、视频)。
保存数据:
可将爬取并解析后的内容保存为文本,或存至数据库等。
上一篇文章讲解的Requests库,已经完成了网络爬虫中发起请求,获取响应这两个流程,接下来的内容解析将交由BeautifulSoup完成。
3.BeautifulSoup总览
构建文档树
BeautifulSoup进行文档解析是基于文档树结构来实现的,而文档树则是由BeautifulSoup中的四个数据对象构建而成的。
文档树对象 | 描述 |
---|---|
Tag | 标签;访问方式:soup.tag;属性:tag.name(标签名),tag.attrs(标签属性) |
Navigable String | 可遍历字符串;访问方式:soup.tag.string |
BeautifulSoup | 文档全部内容,可作为Tag对象看待;属性:soup.name(标签名),soup.attrs(标签属性) |
Comment | 标签内字符串的注释;访问方式:soup.tag.string |
import lxml
import requests
from bs4 import BeautifulSoup
html = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title"><b>The Dormouse's story</b></p>
<p class="story">Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1"><!--Elsie--></a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
<p class="story">...</p>
"""
#1、BeautifulSoup对象
soup = BeautifulSoup(html,'lxml')
print(type(soup))
#2、Tag对象
print(soup.head,'\n')
print(soup.head.name,'\n')
print(soup.head.attrs,'\n')
print(type(soup.head))
#3、Navigable String对象
print(soup.title.string,'\n')
print(type(soup.title.string))
#4、Comment对象
print(soup.a.string,'\n')
print(type(soup.a.string))
#5、结构化输出soup对象
print(soup.prettify())
遍历文档树
BeautifulSoup之所以将文档转为树型结构,是因为树型结构更便于对内容的遍历提取。
向下遍历方法 | 描述 |
---|---|
tag.contents | tag标签子节点 |
tag.children | tag标签子节点迭代类型,用于循环遍历子节点 |
tag.descendants | tag标签子孙节点,用于循环遍历子孙节点 |
向上遍历方法 | 描述 |
---|---|
tag.parent | tag标签父节点 |
tag.parents | tag标签先辈节点迭代类型,用于循环遍历先别节点 |
平行遍历方法 | 描述 |
---|---|
tag.next_sibling | tag标签下一兄弟节点 |
tag.previous_sibling | tag标签上一兄弟节点 |
tag.next_siblings | tag标签后续全部兄弟节点 |
tag.previous_siblings | tag标签前序全部兄弟节点 |
import requests
import lxml
import json
from bs4 import BeautifulSoup
html = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title"><b>The Dormouse's story</b></p>
<p class="story">Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1"><!--Elsie--></a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
<p class="story">...</p>
"""
soup = BeautifulSoup(html,'html.parser')
#1、向下遍历
print(soup.p.contents)
print(list(soup.p.children))
print(list(soup.p.descendants))
#2、向上遍历
print(soup.p.parent.name,'\n')
for i in soup.p.parents:
print(i.name)
#3、平行遍历
print('a_next:',soup.a.next_sibling)
for i in soup.a.next_siblings:
print('a_nexts:',i)
print('a_previous:',soup.a.previous_sibling)
for i in soup.a.previous_siblings:
print('a_previouss:',i)
搜索文档树
BeautifulSoup提供了许多搜索方法,能够便捷地获取我们需要的内容。
遍历方法 | 描述 |
---|---|
soup.find_all( ) | 查找所有符合条件的标签,返回列表数据 |
soup.find | 查找符合条件的第一个个标签,返回字符串数据 |
soup.tag.find_parents() | 检索tag标签所有先辈节点,返回列表数据 |
soup.tag.find_parent() | 检索tag标签父节点,返回字符串数据 |
soup.tag.find_next_siblings() | 检索tag标签所有后续节点,返回列表数据 |
soup.tag.find_next_sibling() | 检索tag标签下一节点,返回字符串数据 |
soup.tag.find_previous_siblings() | 检索tag标签所有前序节点,返回列表数据 |
soup.tag.find_previous_sibling() | 检索tag标签上一节点,返回字符串数据 |
import requests
import lxml
import json
from bs4 import BeautifulSoup
html = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title"><b>The Dormouse's story</b></p>
<p class="story">Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1"><!--Elsie--></a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
<p class="story">...</p>
"""
soup = BeautifulSoup(html,'html.parser')
#1、find_all( )
print(soup.find_all('a')) #检索标签名
print(soup.find_all('a',id='link1')) #检索属性值
print(soup.find_all('a',class_='sister'))
print(soup.find_all(text=['Elsie','Lacie']))
#2、find( )
print(soup.find('a'))
print(soup.find(id='link2'))
#3 、向上检索
print(soup.p.find_parent().name)
for i in soup.title.find_parents():
print(i.name)
#4、平行检索
print(soup.head.find_next_sibling().name)
for i in soup.head.find_next_siblings():
print(i.name)
print(soup.title.find_previous_sibling())
for i in soup.title.find_previous_siblings():
print(i.name)
CSS选择器
BeautifulSoup选择器支持绝大部分的CSS选择器,在Tag或BeautifulSoup对象的.select( )方法中传入字符串参数,即可使用CSS选择器找到Tag。
常用HTML标签:
HTML标题:<h> </h>
HTML段落:<p> </p>
HTML链接:<a href='httts://www.baidu.com/'> this is a link </a>
HTML图像:<img src='Ai-code.jpg',width='104',height='144' />
HTML表格:<table> </table>
HTML列表:<ul> </ul>
HTML块:<div> </div>
import requests
import lxml
import json
from bs4 import BeautifulSoup
html = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title"><b>The Dormouse's story</b></p>
<p class="story">Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1"><!--Elsie--></a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
<p class="story">...</p>
"""
soup = BeautifulSoup(html,'html.parser')
print('标签查找:',soup.select('a'))
print('属性查找:',soup.select('a[id="link1"]'))
print('类名查找:',soup.select('.sister'))
print('id查找:',soup.select('#link1'))
print('组合查找:',soup.select('p #link1'))
爬取图片实例
import requests
from bs4 import BeautifulSoup
import os
def getUrl(url):
try:
read = requests.get(url)
read.raise_for_status()
read.encoding = read.apparent_encoding
return read.text
except:
return "连接失败!"
def getPic(html):
soup = BeautifulSoup(html, "html.parser")
all_img = soup.find('ul').find_all('img')
for img in all_img:
src = img['src']
img_url = src
print(img_url)
root = "F:/Pic/"
path = root + img_url.split('/')[-1]
print(path)
try:
if not os.path.exists(root):
os.mkdir(root)
if not os.path.exists(path):
read = requests.get(img_url)
with open(path, "wb")as f:
f.write(read.content)
f.close()
print("文件保存成功!")
else:
print("文件已存在!")
except:
print("文件爬取失败!")
if __name__ == '__main__':
html_url=getUrl("https://findicons.com/search/nature")
getPic(html_url)
写在最后
通过这篇文章文章的学习,我们掌握了文档解析的知识以及它的编程实现,这为我们利用爬虫提取所需数据带来了极大的遍历。