kafka和zookeeperkafka

Apache Kafka核心概念

2020-10-02  本文已影响0人  tracy_668

[TOC]

1、Kafka集群结构

image.png

producer和consumer想必大家都很熟悉,一个生产消息,一个消费掉消息。这里就不再做太多解释。

Broker
一个Borker就是Kafka集群中的一个实例,或者说是一个服务单元。连接到同一个zookeeper的多个broker实例组成kafka的集群。在若干个broker中会有一个broker是leader,其余的broker为follower。leader在集群启动时候选举出来,负责和外部的通讯。当leader死掉的时候,follower们会再次通过选举,选择出新的leader,确保集群的正常工作。

Consumer Group
Kafka和其它消息系统有一个不一样的设计,在consumer之上加了一层group。同一个group的consumer可以并行消费同一个topic的消息,但是同group的consumer,不会重复消费。这就好比多个consumer组成了一个团队,一起干活,当然干活的速度就上来了。group中的consumer是如何配合协调的,其实和topic的分区相关联

如果同一个topic需要被多次消费,可以通过设立多个consumer group来实现。每个group分别消费,互不影响。

Topic

kafka中消息订阅和发送都是基于某个topic。比如有个topic叫做NBA赛事信息,那么producer会把NBA赛事信息的消息发送到此topic下面。所有订阅此topic的consumer将会拉取到此topic下的消息。Topic就像一个特定主题的收件箱,producer往里丢,consumer取走。

kafka采用分区(Partition)的方式,使得消费者能够做到并行消费,从而大大提高了自己的吞吐能力。同时为了实现高可用,每个分区又有若干份副本(Replica),这样在某个broker挂掉的情况下,数据不会丢失。

接下来我们详细分析kafka是如何基于Partition和Replica工作的。

分区(Partition)

大多数消息系统,同一个topic下的消息,存储在一个队列。分区的概念就是把这个队列划分为若干个小队列,每一个小队列就是一个分区,如下图:

image.png

这样做的好处是什么呢?其实从上图已经可以看出来。无分区时,一个topic只有一个消费者在消费这个消息队列。采用分区后,如果有两个分区,最多两个消费者同时消费,消费的速度肯定会更快。如果觉得不够快,可以加到四个分区,让四个消费者并行消费。分区的设计大大的提升了kafka的吞吐量!!

我们再结合下图继续讲解Partition。

image.png

此图包含如下几个知识点:
1、一个partition只能被同组的一个consumer消费(图中只会有一个箭头指向一个partition)

2、同一个组里的一个consumer可以消费多个partition(图中第一个consumer消费Partition 0和3)

3、消费效率最高的情况是partition和consumer数量相同。这样确保每个consumer专职负责一个partition。

4、consumer数量不能大于partition数量。由于第一点的限制,当consumer多于partition时,就会有consumer闲置。

5、consumer group可以认为是一个订阅者的集群,其中的每个consumer负责自己所消费的分区

副本(Replica)
提到副本,肯定就会想到正本。副本是正本的拷贝。在kafka中,正本和副本都称之为副本(Repalica),但存在leader和follower之分。活跃的称之为leader,其他的是follower。

每个分区的数据都会有多份副本,以此来保证Kafka的高可用。

Topic、partition、replica的关系如下图:

image.png

topic下会划分多个partition,每个partition都有自己的replica,其中只有一个是leader replica,其余的是follower replica。

消息进来的时候会先存入leader replica,然后从leader replica复制到follower replica。只有复制全部完成时,consumer才可以消费此条消息。这是为了确保意外发生时,数据可以恢复。consumer的消费也是从leader replica读取的。

由此可见,leader replica做了大量的工作。所以如果不同partition的leader replica在kafka集群的broker上分布不均匀,就会造成负载不均衡。

kafka通过轮询算法保证leader replica是均匀分布在多个broker上。如下图。

image.png

可以看到每个partition的leader replica均匀的分布在三个broker上,follower replica也是均匀分布的。

关于Replica,有如下知识点:

1、Replica均匀分配在Broker上,同一个partition的replica不会在同一个borker上

2、同一个partition的Replica数量不能多于broker数量。多个replica为了数据安全,一台server存多个replica没有意义。server挂掉,上面的副本都要挂掉。

3、分区的leader replica均衡分布在broker上。此时集群的负载是均衡的。这就叫做分区平衡

分区平衡

在讲分区平衡前,先讲几个概念:

1、AR: assigned replicas,已分配的副本。每个partition都有自己的AR列表,里面存储着这个partition最初分配的所有replica。注意AR列表不会变化,除非增加分区。

2、PR(优先replica):AR列表中的第一个replica就是优先replica,而且永远是优先replica。最初,优先replica和leader replica是同一个replica。

3、ISR:in sync replicas,同步副本。每个partition都有自己的ISR列表。ISR是会根据同步情况动态变化的。

最初ISR列表和AR列表是一致的,但由于某个节点死掉,或者某个节点的follower replica落后leader replica太多,那么该节点就会被从ISR列表中移除。此时,ISR和AR就不再一致

接下来我们通过一个例子来理解分区平衡。
1、根据以上信息,一个拥有3个replica的partition,最初是下图的样子。

image.png

可以看到AR和ISR保持一致,并且初始时刻,优先副本和leader副本都指向replica 0.

2、接下来,replica 0所在的机器下线了,那么情况会变成如下图所示:

image.png

可以看到replica 0已经从ISR中移除掉了。同时,由于重新选举,leader副本变成了replica 1,而优先副本还是replica 0。优先副本是不会改变的。

由于最初时,leader副本在broker均匀分布,分区是平衡的。但此时,由于此partition的leader副本换成了另外一个,所以此时分区平衡已经被破坏。

3、replica 0所在的机器修复了,又重新上线,情况如下图:


image.png

可以看到replica 0重新回到ISR列表中,不过此时他没能恢复leader的身份。只能作为follower当一名小弟。

此时分区依旧是不平衡的。那是否意味着分区永远都会不平衡下去呢?不是的。

4、kafka会定时触发分区平衡操作,也可以主动触发分区平衡。这就是所谓的分区平衡操作,操作完后如下图。

image.png

可以看到此时leader副本通过选举,会重新变回来replica 0,因为replica 0是优先副本,其实优先的含义就是选择leader时被优先选择。这样整个分区又回到了初始状态,而初始时,leader副本是均匀分布的。此时已经分区平衡了。

由此可见,分区平衡操作就是使leader副本和优先副本保持一致的操作。可以把优先副本理解为分区的平衡状态位,平衡操作就是让leader副本归位。

Partition的读和写

通过之前的学习,我们知道topic下划分了多个partition,消息的生产和消费最终都是发生在partition之上。下图是一个三个partition的topic的读写示意。

image.png

我们先看右边的producer,可以看到写的时候,采用round-robin算法,轮询往每个partition写入。

而在消费者端,每个consumer都维护一个offset值,指向的是它所消费到的消息坐标。

我们先看group A的三个consumer,他们分别独立消费不同的三个partition。每个consumer维护了自己的offset。

我们再看group B,可以看到两个group是并行消费整个topic,同一条消息会被不同group消费到。

上一篇下一篇

猜你喜欢

热点阅读