第2课:算法复杂度分析(上):时间、空间复杂度分析法

2020-05-06  本文已影响0人  Java尖子生

1、算法的考量指标

算法的考量指标,我们是用时间、空间复杂度来衡量的。

时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系。
空间复杂度全称就是渐进空间复杂度,表示算法的存储空间与数据规模之间的增长关系。

2、为什么需要复杂度分析?

我把代码跑一遍,通过统计、监控,就能得到算法执行的时间和占用的内存大小
这种评估算法执行效率的方法是正确的。很多数据结构和算法书籍还给这种方法起了一个名字,叫事后统计法。但是,这种统计方法有非常大的局限性。

3、大O表示法

大O表示法:算法的时间复杂度通常用大O符号表述,定义为T[n] = O(f(n))。称函数T(n)以f(n)为界或者称T(n)受限于f(n)。 如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n)。T(n)称为这一算法的“时间复杂度”。当输入量n逐渐加大时,时间复杂度的极限情形称为算法的“渐近时间复杂度”。

#例1 int sum(int n) {
   int result = 0;
   int i = 1;
   for (; i <= n; ++i) {
     result = result + i;
   }
   return result;
 }

分析:假设每行代码执行的时间都一样,为 unit_time。
第 2、3 行代码分别需要 1 个 unit_time 的执行时间,第 4、5 行都运行了 n 遍,
所以需要 2n * unit_time 的执行时间,所以这段代码总的执行时间就是 (2n+2) * unit_time。
可以看出来,所有代码的执行时间 T(n) 与每行代码的执行次数成正比。
再看看下面这个例子,同上面的分析方法,我们得出这段代码总的执行时间就是 (2n^2+2n+3)*unit_time。

例2:int sum(int n) {
   int result = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
     j = 1;
     for (; j <= n; ++j) {
       result = result +  i * j;
     }
   }
 }

把这个规律总结成一个公式:T(n) = O(f(n))

4、如何分析一段代码的时间复杂度?

例3:int sum(int n) {
   int result_1 = 0;
   int x = 1;
   for (; x < 1000; ++x) {
     result_1 = result_1 + x;
   }

   int result_2 = 0;
   int y = 1;
   for (; y < n; ++y) {
     result_2 = result_2 + y;
   }
 
   int result_3 = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
     j = 1; 
     for (; j <= n; ++j) {
       result_3 = result_3 +  i * j;
     }
   }
   return result_1 + result_2 + result_3;
 }

这个例子分三部分:求result_1、result_2、result_3。
第一部分跟n没关系:属于常量阶,我们表示为0(1)
第二部分:O(n)
第三部分为:O(n^2)
所以整个sum函数的时间复杂度为:T(n)=O(1)+T1(n)+T2(n)=max(O(f(n)), O(g(n)))=max(O(n),O(n^2)) = n^2

例4: int sum1(int n) {
   int result = 0;
   int i = 1;
   for (; i <= n; ++i) {
     result = sum(i) + i;
   }
   return result;
 }
 
int sum(int n) {
   int result = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
     j = 1;
     for (; j <= n; ++j) {
       result = result +  i * j;
     }
   }
 }

5、常见时间复杂度分析

常见时间复杂度.png
例5: int cal(int m, int n) {
  int sum_1 = 0;
  int i = 1;
  for (; i < m; ++i) {
    sum_1 = sum_1 + i;
  }

  int sum_2 = 0;
  int j = 1;
  for (; j < n; ++j) {
    sum_2 = sum_2 + j;
  }

  return sum_1 + sum_2;
}

6、空间复杂度

空间复杂度比较简单,空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度,记做S(n)=O(f(n))。看一个例子。

例6: int sum(int n) {
  int result = 0;
  int[] a = new int[n]; // 开辟了新的存储空间
  for (i; i <n; ++i) {
    a[i] = i * i;
  }
  for (i = n-1; i >= 0; --i) {
    result +=a[i];
  }
  return result;
}

除了第三行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。
我们常见的空间复杂度就是 O(1)、O(n)、O(n2),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。所以,对于空间复杂度,掌握刚我说的这些内容已经足够了。

上一篇 下一篇

猜你喜欢

热点阅读