PCA 主成分分析实践 plink软件

2020-04-25  本文已影响0人  小鲨鱼2020

1、测试数据下载  

链接:https://pan.baidu.com/s/1EfffExvtxZYI1QLuxUZQ_g

提取码:5wfe

数据为plink 格式数据test.map、test.ped ;

一共包含三个品种,DOR、GMM、SUN各20个样本。

2、运行plink软件,命令如下:

plink --file test --sheep --pca 5 header tabs --out test

一共生成4个文件:

3、利用R软件读取test.eigenvec文件,并绘图,命令如下:

mydat<-read.table("test.eigenvec",as.is = T,header = T,stringsAsFactors = F)

png("test.png",width = 7000,height = 7000,pointsize = 160)

plot(mydat$PC1,mydat$PC2,lwd.ticks=10,font.axis=2,cex.lab=1.2,cex.axis=1.2,font.lab=2,ylab="PC2",xlab = "PC1",main="PCA",cex=1.4,pch=19,col=c(rep("red",20),rep("cyan",20),rep("magenta",20)))

box(which="plot",col="black",lwd=18)

legend("bottomleft",box.lwd=5,cex=1.1,inset = 0.04,c("DOR","GMM","SUN"),pch=19,col=c("red","cyan","magenta"))

dev.off()

4、绘图结果:

上一篇下一篇

猜你喜欢

热点阅读