机器学习和人工智能入门

通俗易懂的机器学习入门指导

2015-10-28  本文已影响845人  Jabari

机器学习,也叫数据挖掘、模式识别;其定义很多。但大白话的说,机器学习要做的就是,现在有一些数据(比如你人人网好友和他们的发言),我们要对数据进行处理,希望从数据中得到我们想要的信息(比如这些好友哪些和你投缘)。从上面的例子,我们可以看出机器学习其实是对人类智能的模仿,也是实现人类和更高智能的必经之路。

那他他大体上有哪些内容呢?

第一部分,机器学习的底层理论

机器学习的底层理论有一些,比如推理与规划、近似可计算理论、正则化、提升理论、核方法、当然还有大名鼎鼎的统计机器学习理论等等。这部分内容不是初学者学的。
是这些理论其实是在实践中总结的,没有基础的机器学习方法是不能明白理论的;
是这些理论需要的数学很高,您那高等数学啥的就别提了,这些理论至少也得有泛函分析的一般知识、优化理论的一般知识、矩阵理论的一般知识、高等概率论、随机分析等等的数学基础。
是这些理论对于大部分只是想用一下机器学习方法的人,我觉得毫无意义;您要只是想用一下机器学习,这些理论对您估计看过全当娱乐。

第二部分,机器学习方法

这部分才是初学者应该学的,也是必须学的。(按照数据形式,给了大体情况)他按照对数据处理可以分成如下几个部分:

  1. 监督学习:也就是你的数据都已经处理的很好了,哪些数据是哪种情况都分清楚了。
  2. 非监督学习:你的数据太原始了,全是一堆数,都不知道哪个是哪个情况。
  3. 半监督学习:因为监督学习效果好,但是数据要求太高;非监督学习效果不咋地呀,但对数据要求低;那么我们折中一下,先标注一部分数据,然后用监督学习对其他未标注数据进行标注,如果算法产生的准确率在某个参数以下,则将这个数据给人来标准。
  4. 迁移学习:比如我们现在有种方法,用在了图书之间的相似分析上,那么这个方法可不可以用在人人网上用户的相关分析上呢?这就是迁移学习。
  5. 强化学习:根据环境反馈进行学习。
  6. “各种乱入学习”:其实,还有很多奇葩的学习方法不是以上五种比较常见的学习方法,他们大体上都是各种奇葩的想法,加上各种有爱的数学理论推导而成。因为还不是十分的成熟,所以初学者也不必太纠结这部分。

我们一般处理的数据,都是啥样的呢?

我们处理的数据,一般来说是表状的,说白了,就是——每一条数据就是一个向量(前几天看到有个孩子说向量是有方向的,我觉得特无语,= =!,现在就连物理学里面的向量你都想象不出他的方向了,虽然向量可以想象成几何形体,这是分析的基础,但是不要拘泥于几何) 。既然每一条数据是一个向量,那么很显然所有数据构成了一个向量空间。这个向量空间一定要有一定的抽象想象能力,不光是欧式空间,还可能是拓扑空间。。。马上你就会知道为啥了。

那知道了如上内容。我们看看机器学习最基础最核心的有哪些方法,当然如果你看的书里面超出这个,请不要惊讶,我只是列举了非常非常常用而常见的方法。

最常见的机器学习方法 = 基础方法 * 拓展方法 * 应用领域

基础方法

拓展方法

应用领域

如果你非要推荐的话:

  1. Duda的《模式分类》。其实我个人更喜欢《现代模式识别》这本书,但是由于国人的崇洋媚外情绪实在太严重,确实国内很多书抄袭现象严重、基本上出书目的就是为了出书,根本不是给人看到。但也不能否认国内也很多好书!
  2. 《现代模式识别》(第二版),真心是好书,在我个人看法,完胜Duda那本无疑。
  3. Mitchell的《机器学习》
  4. 第一本和第二本,数学都需要很多,买书或者借书,请务必看清前面序言中的关于数学知识部分的说明,否则您就只有一个劲的补数学了。第三本其实数学需要的不多,但内容太少,而且涉及一些浅显的机器学习理论,也比较麻烦。这倒不如《机器学习引论》(An Introduce To Machine Learning),这本可以说用了最少的数学知识,讲了一些内容,也很薄,很好看。 其实,够了。为啥呢?因为问我看哪方面书的人挺多的(因为我觉得我成天就看书、看论文啥的)。 但他们反复的问,貌似你推荐他们几本,他们看了看或者没看,就又要你推荐。。。

说句心里话,学习哪一门新科目,都不是一帆风顺的。你觉得你之前完全没有基础,200多页的机器学习书,你可以用一个下午秒杀,那我觉得你。。。太有爱了。

所以说白了,书不是重要的,重要的是你的决心,你到底要不要学这门学科!你要是抱着半吊子的心态,那果断你可以不用看了,因为半吊子的决心是不会学明白任何一门学科!你要是想学,就咬紧牙,坚持看,反复看,反复查。


转自:http://blog.163.com/zhoulili1987619@126/blog/static/353082012015613104243192/

上一篇 下一篇

猜你喜欢

热点阅读